Abstract

We report an experimental and theoretical study of the optical properties of two-dimensional arrays of aluminum nanoparticle in-tandem pairs. Plasmon resonances and effective optical constants of these structures are investigated, and strong magnetic response as well as negative permeability is observed down to 400nm wavelength. Theoretical calculations based on the finite-difference time-domain method are performed for various particle dimensions and lattice parameters, and are found to be in good agreement with the experimental findings. The results show that metamaterials operating across the whole visible wavelength range are feasible.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Magnetic-field enhancement in gold nanosandwiches

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll
Opt. Express 14(18) 8240-8246 (2006)

Reply to Comment on "Negative refractive index in artificial metamaterials"

A. N. Grigorenko
Opt. Lett. 32(11) 1512-1514 (2007)

Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs

Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler
Opt. Express 16(17) 13287-13295 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription