Abstract

A single-mode cw optical parametric oscillator (OPO) based on a bulk Bragg grating is reported. The OPO is capable of producing multiwatt output power both at the signal (1535nm) and idler (3468nm) wavelengths with a side-mode suppression ratio better than 29dB. Coarse frequency tuning of 120GHz (4cm1) and fast mode-hop-free tuning of 40GHz (1.3cm1) have been achieved by scanning the grating temperature and the OPO pump laser, respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  2. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, Opt. Express 17, 7702 (2009).
    [CrossRef] [PubMed]
  3. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, Appl. Opt. 38, 619 (1999).
    [CrossRef]
  4. C. Moser, L. Ho, E. Maye, and F. Havermeyer, J. Phys. D 41, 224003 (2008).
    [CrossRef]
  5. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
    [CrossRef] [PubMed]
  6. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, Opt. Lett. 34, 449 (2009).
    [CrossRef] [PubMed]
  7. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, Opt. Lett. 27, 1439 (2002).
    [CrossRef]
  8. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Opt. Express 16, 11141 (2008).
    [CrossRef] [PubMed]
  9. A. Henderson and R. Stafford, Appl. Phys. B 85, 181 (2006).
    [CrossRef]
  10. S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, Opt. Express 18, 1323 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (2)

2006 (1)

A. Henderson and R. Stafford, Appl. Phys. B 85, 181 (2006).
[CrossRef]

2005 (1)

2002 (1)

1999 (1)

1996 (1)

Alexander, J. I.

Bosenberg, W. R.

Byer, R. L.

Drobshoff, A.

Efimov, O.

Glebov, L.

Glebova, L.

Halonen, L.

Harren, F. J. M.

Havermeyer, F.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, J. Phys. D 41, 224003 (2008).
[CrossRef]

Henderson, A.

A. Henderson and R. Stafford, Appl. Phys. B 85, 181 (2006).
[CrossRef]

Ho, L.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, J. Phys. D 41, 224003 (2008).
[CrossRef]

Huang, Y. C.

Jacobsson, B.

Kazovsky, L. G.

Laurell, F.

Lin, S. T.

Lin, Y. Y.

Marhic, M. E.

Maye, E.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, J. Phys. D 41, 224003 (2008).
[CrossRef]

Moser, C.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, J. Phys. D 41, 224003 (2008).
[CrossRef]

Myers, L. E.

Pasiskevicius, V.

Peltola, J.

Persijn, S.

Richardson, K.

Rotari, E.

Siltanen, M.

Smirnov, V.

Stafford, R.

A. Henderson and R. Stafford, Appl. Phys. B 85, 181 (2006).
[CrossRef]

Tiihonen, M.

Vainio, M.

Wang, T. D.

Wong, K. K. Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The standing-wave SRO cavity consists of three mirrors (M) and a temperature controlled bulk Bragg grating (BG). Radii of curvature of the concave mirrors are 75 mm , and their geometric separation is 112 mm . The distance between a curved and a flat mirror (grating) is 174 mm . The SRO is pumped by a Yb-fiber laser system; see text for details.

Fig. 2
Fig. 2

Output power of the SRO versus pump power, with the pump power measured just before the SRO cavity. The output power of a conventional SRO based on highly reflective mirrors is shown only for comparison. (Note that no intracavity etalon was used. Inclusion of an etalon would increase the threshold.) The maximum signal output power of the conventional SRO is less than 30 mW . HR, highly reflective; BG, Bragg grating.

Fig. 3
Fig. 3

Upper panel, scanning of the SRO idler frequency done by scanning the pump frequency. Lower panel, idler output power was varied between two states by stepping the pump power from 13.3 to 9.8 W and back during the frequency scan.

Fig. 4
Fig. 4

Upper panel, spectrum of C H 4 measured in the laboratory air using photoacoustic spectroscopy. Scale of the x axis was obtained by linear interpolation from the wavemeter readings recorded at both ends of the scan. (The actual scan is not perfectly linear; see Fig. 3.) Lower panel, simulation of the same spectrum, calculated using a C H 4 concentration of 1.7 ppm expected in standard air. Other molecules that have spectral features in the region and were included in the simulation are C H 2 O ( 0.1 ppm , estimated maximum level) and H 2 O (1.2%). Simulation uses the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/).

Metrics