Abstract

We demonstrate the use of a binary diffractive optical element in a very simple setup to convert the multilobed beam from a low fill factor array of coherent laser diodes into a quasi-Gaussian beam. The phase profile of the grating is determined with a phase retrieval algorithm. Experimentally, the conversion efficiency reaches more than 44%. We also establish that this setup can be used to make an effective measurement of the coherency of the laser array.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  2. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, Opt. Lett. 33, 2377 (2008).
    [CrossRef] [PubMed]
  3. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
    [CrossRef] [PubMed]
  4. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, Opt. Lett. 33, 354 (2008).
    [CrossRef] [PubMed]
  5. G. Hergenhan, B. Lucke, and U. Brauch, Appl. Opt. 42, 1667 (2003).
    [CrossRef] [PubMed]
  6. D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
    [CrossRef]
  7. H. Dammann and K. Görtler, Opt. Commun. 3, 312 (1971).
    [CrossRef]
  8. S.Martellucci and A.N.Chester, eds., Diffractive Optics and Optical Microsystems (Plenum, 1997), p. 422.
  9. J. K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett. 44, 293 (1984).
    [CrossRef]

2008

2005

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

2003

1987

1984

J. K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett. 44, 293 (1984).
[CrossRef]

1971

H. Dammann and K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Ackley, D. E.

J. K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett. 44, 293 (1984).
[CrossRef]

Botez, D.

J. K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett. 44, 293 (1984).
[CrossRef]

Brauch, U.

Butler, J. K.

J. K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett. 44, 293 (1984).
[CrossRef]

Cheung, E. C.

Dammann, H.

H. Dammann and K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Fan, T. Y.

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Georges, P.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Goodno, G. D.

Görtler, K.

H. Dammann and K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Hergenhan, G.

Ho, J. G.

Hoyer-Leitzel, A.

Khajavikhan, M.

Krakowski, M.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Larkins, E.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Leger, J. R.

Lim, J.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Lucas-Leclin, G.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Lucke, B.

Michel, N.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Paboeuf, D.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Rice, R. R.

Rothenberg, J.

Sujecki, S.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

Swanson, G. J.

Thielen, P.

Veldkamp, W. B.

Weber, M.

Wickham, M.

Appl. Opt.

Appl. Phys. Lett.

D. Paboeuf, G. Lucas-Leclin, P. Georges, N. Michel, M. Krakowski, J. Lim, S. Sujecki, and E. Larkins, Appl. Phys. Lett. 93, 211102 (2008).
[CrossRef]

J. K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett. 44, 293 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Opt. Commun.

H. Dammann and K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Opt. Lett.

Other

S.Martellucci and A.N.Chester, eds., Diffractive Optics and Optical Microsystems (Plenum, 1997), p. 422.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. L 1 L 4 are cylindrical lenses with focal lengths f 1 = f 2 = 100 mm , f 3 = 50 mm , f 4 = 250 mm .

Fig. 2
Fig. 2

Theoretical near-field profiles at the output of the conversion setup in NF . Blue dashed curve, without the DOE; red solid curve, with the DOE.

Fig. 3
Fig. 3

Experimental near-field profiles at the output of the system. Blue dashed curve, without the DOE; red solid curve, with the DOE, at operating current I = 1.6 A

Fig. 4
Fig. 4

Evolution of the coherent compound C with visibility V (black curve, theoretical evolution; triangles, experimental measurement). Inset, simulated far-field profile of the out-of-phase mode with C = 0.4 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ 0 = 1 2 s = 1 N ( 1 ) s x s a ,
τ n = 1 i π n s = 1 N ( 1 ) s e 2 i π ( x s a ) , n Z * ,
I inc ( θ ) = exp ( 2 π 2 w 2 sin 2 ( θ ) λ 2 ) ,
I coh ( θ ) = I inc ( θ ) × ( sin ( M 2 ( 2 π p λ sin ( θ ) + k π M + 1 ) ) sin ( 1 2 ( 2 π p λ sin ( θ ) + k π M + 1 ) ) + ( 1 ) k sin ( M 2 ( 2 π p λ sin ( θ ) k π M + 1 ) ) sin ( 1 2 ( 2 π p λ sin ( θ ) k π M + 1 ) ) ) 2 ,

Metrics