Abstract

We present a method to image refractive index distribution within a sample across 8mm dimension with high spatial resolution by a transmission low-coherence interferometer. The relative strong forward-scattering light is collected, from which the parallel projections of refractive indices within the sample are obtained. A convolution backprojection algorithm is used to transform the projection data set recorded at sufficient angular views into the spatial distribution of refractive indices within the sample. We experimentally demonstrate this method by imaging a phantom. We show that this method can achieve a precision of 0.01 in determining the refractive index and a spatial resolution of 40μm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Lett. 31, 178 (2006).
    [CrossRef] [PubMed]
  2. A. V. Zvyagin, D. Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson, Opt. Express 11, 3503 (2003).
    [CrossRef] [PubMed]
  3. A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, Opt. Lett. 28, 701 (2003).
    [CrossRef] [PubMed]
  4. B. C. Wilson, and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
    [CrossRef]
  5. A. S. Thomas, B. A. Bower, Y. K. Tao, and J. A. Izatt, in Biomedical Optics (BIOMED) (Optical Society of America, 2008), paper BWF2.
  6. M. R. Hee, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
    [CrossRef] [PubMed]
  7. S. Andersson Engels, R. Berg, S. Svanberg, and O. Jarlman, Opt. Lett. 15, 1179 (1990).
    [CrossRef]
  8. M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, J. Opt. Soc. Am. A 14, 216 (1997).
    [CrossRef]
  9. W. Drexeler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
    [CrossRef]
  10. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  11. B. K. Pierscionek, Ophthalmic Res. 26, 32 (1994).
    [CrossRef] [PubMed]

2006

2003

1997

1994

B. K. Pierscionek, Ophthalmic Res. 26, 32 (1994).
[CrossRef] [PubMed]

1993

1990

S. Andersson Engels, R. Berg, S. Svanberg, and O. Jarlman, Opt. Lett. 15, 1179 (1990).
[CrossRef]

B. C. Wilson, and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Alexandrov, S. A.

Armstrong, J. J.

Berg, R.

Boppart, S. A.

Bower, B. A.

A. S. Thomas, B. A. Bower, Y. K. Tao, and J. A. Izatt, in Biomedical Optics (BIOMED) (Optical Society of America, 2008), paper BWF2.

Carney, P. S.

Charrière, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

Dorn, P.

Drexeler, W.

W. Drexeler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
[CrossRef]

Engels, S. Andersson

Fujimoto, J.

W. Drexeler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
[CrossRef]

Fujimoto, J. G.

Genack, A. Z.

Hee, M. R.

Hillman, T. R.

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
[CrossRef] [PubMed]

A. S. Thomas, B. A. Bower, Y. K. Tao, and J. A. Izatt, in Biomedical Optics (BIOMED) (Optical Society of America, 2008), paper BWF2.

Jacques, S. L.

B. C. Wilson, and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Jarlman, O.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Kempe, M.

Kuehn, J.

Marian, A.

Marks, D. L.

Marquet, P.

Montfort, F.

Pierscionek, B. K.

B. K. Pierscionek, Ophthalmic Res. 26, 32 (1994).
[CrossRef] [PubMed]

Reynolds, J. J.

Rudolph, W.

Sampson, D. D.

Silva, D.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Svanberg, S.

Swanson, E. A.

Tao, Y. K.

A. S. Thomas, B. A. Bower, Y. K. Tao, and J. A. Izatt, in Biomedical Optics (BIOMED) (Optical Society of America, 2008), paper BWF2.

Thomas, A. S.

A. S. Thomas, B. A. Bower, Y. K. Tao, and J. A. Izatt, in Biomedical Optics (BIOMED) (Optical Society of America, 2008), paper BWF2.

Tsuzuki, T.

Wilson, B. C.

B. C. Wilson, and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Zvyagin, A. V.

Zysk, A. M.

IEEE J. Quantum Electron.

B. C. Wilson, and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

J. Opt. Soc. Am. A

Ophthalmic Res.

B. K. Pierscionek, Ophthalmic Res. 26, 32 (1994).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

W. Drexeler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
[CrossRef]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

A. S. Thomas, B. A. Bower, Y. K. Tao, and J. A. Izatt, in Biomedical Optics (BIOMED) (Optical Society of America, 2008), paper BWF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the transmission OCT setup used in this study: SLD, superluminescent diode; C 1 2 , coupler; PC, polarization controller; M, mirror; W, water; SM, x z axis stage and stepping motor; S, sample; L 1 6 , lens; T, water tank; SP, spectrometer.

Fig. 2
Fig. 2

Typical parallel projection of the refractive indices within one cross section of the sample.

Fig. 3
Fig. 3

Reconstructed cross-sectional distribution of refractive indices within the tube sample surrounded with agarose gel.

Fig. 4
Fig. 4

Line profile of the reconstructed image (Fig. 3) at x = 8 mm . The half-amplitude and quarter-amplitude lines cut across the profile at points A 1 4 and B 1 4 , respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ z = ( n ( r ) n air ) d l ,
n ( r ) = n air + 0 π ( p θ ( l ) c ( l ) ) δ ( x cos θ + y sin θ l ) d l d θ ,

Metrics