Abstract

We investigated experimentally and theoretically an invertible fiber-type transformation from a photonic bandgap fiber into a nonideal waveguide and then into an index-guiding photonic crystal fiber via the thermo-optic effect of the fluid filled in the air holes. Such a transformation could be used to develop an in-fiber optical switch/attenuator with a high-extinction ratio of more than 35dB over an extremely broad wavelength range from 600to1700nm via a small temperature adjustment.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, Appl. Opt. 47, 5321 (2008).
    [CrossRef] [PubMed]
  2. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
    [CrossRef]
  3. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, Opt. Express 11, 2589 (2003).
    [CrossRef] [PubMed]
  4. Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, Opt. Lett. 34, 3683 (2009).
    [CrossRef] [PubMed]
  5. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
    [CrossRef]
  6. C.-P. Yu, J.-H. Liou, S.-S. Huang, and H.-C. Chang, Opt. Express 16, 4443 (2008).
    [CrossRef] [PubMed]
  7. Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, Opt. Express 16, 7258 (2008).
    [CrossRef] [PubMed]
  8. S. Guo and S. Albin, Opt. Express 11, 167 (2003).
    [CrossRef] [PubMed]
  9. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, Opt. Express 14, 5688 (2006).
    [CrossRef] [PubMed]
  10. B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. J. Russell, Opt. Lett. 26, 1469 (2001).
    [CrossRef]

2009 (2)

2008 (3)

2006 (1)

2003 (2)

2001 (2)

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
[CrossRef]

B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. J. Russell, Opt. Lett. 26, 1469 (2001).
[CrossRef]

Albin, S.

Arriaga, J.

Bartelt, H.

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Broeng, J.

Brueckner, S.

Chang, H.-C.

Dong, X.

Du, J.

Ecke, W.

Eggleton, B. J.

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
[CrossRef]

Guo, S.

Hale, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
[CrossRef]

Hermann, D.

Huang, S.-S.

Jin, L.

Jin, W.

Kerbage, C.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
[CrossRef]

Knight, J. C.

Kobelke, J.

Kuhlmey, B. T.

Larsen, T.

Liou, J.-H.

Liu, B.

Liu, Y.

Luan, F.

Mangan, B. J.

Moerl, K.

Mörl, K.

Pearce, G. J.

Rothhardt, M.

Russell, P. S. J.

Schroeder, K.

Shan, L.

Spittel, R.

Tan, X.

Wang, A.

Wang, Y.

Wang, Z.

Willsch, R.

Windeler, R. S.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
[CrossRef]

Wu, D. K. C.

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001).
[CrossRef]

Yu, C.-P.

Zou, B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-section image of the PCF; side images of (b) the unfilled PCF, (c) the transition region between unfilled and fully filled air holes, and (d) the fully filled PCF, where (b), (c), and (d) were observed by the use of a microscope (Nikon ECLIPSE 80i) whose focal plane was adjusted to the fiber axis.

Fig. 2
Fig. 2

(a) Transmission spectra of the fluid-filled PCF ( n = 1.550 at 20 ° C ) at temperatures of 20 ° C , 60 ° C , and 100 ° C ; (b) transmission spectrum evolution of the fluid-filled PCF with rising temperature from 20 ° C to 100 ° C with a step of 10 ° C .

Fig. 3
Fig. 3

Transmission spectra of the fluid-filled PCF ( n = 1.480 at 20 ° C ) at different temperatures from (a) 20 ° C to 70 ° C and (b) from 75 ° C to 130 ° C .

Fig. 4
Fig. 4

Calculated bandgap maps and measured transmission spectra of the fluid-filled PCF ( n = 1.550 at 20 ° C ) at (a) 20 ° C , (b) 60 ° C , and (c) 100 ° C , where G2, G3,…, and G8 illustrate the second, third,…, and eighth bandgaps, respectively. Note that the first bandgap occurs near 3000.

Fig. 5
Fig. 5

Calculated transmission spectra of the fundamental mode in the fluid-filled PCF ( n = 1.480 at 20 ° C ) at different temperatures where the calculated fluid-filled PCF has a length of 100 mm .

Metrics