Abstract

We propose and demonstrate a global and efficient approach for scalar and vectorial beam shaping based on the interaction of circularly polarized light with a single piece of homogeneous anisotropic medium. The main idea is to mimic the behavior of a two-dimensional inhomogeneous birefringent medium with a radial distribution of its optical axis. This is done by transforming an incident Gaussian beam into a conical nipple of light that further propagates along the optical axis of a c-cut uniaxial crystal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
    [CrossRef]
  2. A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am. A 20, 163 (2003).
    [CrossRef]
  3. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  4. K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 31, 2151 (2006).
    [CrossRef] [PubMed]
  5. P. Muys, T. Moser, and T. Feurer, J. Opt. Soc. Am. B 24, 2627 (2007).
    [CrossRef]
  6. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Opt. Lett. 34, 1021 (2009).
    [CrossRef] [PubMed]
  7. G. Biener, A. Niv, V. Kleiner, and E. Hasman, Opt. Lett. 27, 1875 (2002).
    [CrossRef]
  8. S. C. McEldowney, D. M. Shemo, R. A. Chipman, and P. K. Smith, Opt. Lett. 33, 134 (2008).
    [CrossRef] [PubMed]
  9. L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef] [PubMed]
  10. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
    [CrossRef] [PubMed]
  11. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  12. H. Ren, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 89, 051114 (2006).
    [CrossRef]
  13. Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, Opt. Express 13, 4638 (2005).
    [CrossRef] [PubMed]
  14. For a given focal length f, the lowest accessible value for θ corresponds to the contact between the pair of axicons, whereas the largest value is related to the clear aperture of the optical elements.

2009

2008

2007

2006

K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 31, 2151 (2006).
[CrossRef] [PubMed]

H. Ren, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

2005

2003

2002

1996

1972

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Biener, G.

Brasselet, E.

Chipman, R. A.

Ciattoni, A.

Cincotti, G.

Desyatnikov, A. S.

Fadeyeva, T.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Feurer, T.

Hasman, E.

Izdebskaya, Y.

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

Kivshar, Yu. S.

Kleiner, V.

Kozawa, Y.

Krolikowski, W.

Lee, J. -H.

Lin, Y. -H.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

McEldowney, S. C.

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

Moser, T.

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

Muys, P.

Nie, X.

Niv, A.

Palma, C.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Ren, H.

Sato, S.

Schadt, M.

Shemo, D. M.

Shvedov, V.

Smith, P. K.

Stalder, M.

Volyar, A.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Wu, S. -T.

Wu, Y. -H.

Yonezawa, K.

Appl. Phys. Lett.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Spectrosc.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Phys. Rev. Lett.

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

Other

For a given focal length f, the lowest accessible value for θ corresponds to the contact between the pair of axicons, whereas the largest value is related to the clear aperture of the optical elements.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) CP conical nipple of light impinging on a c-cut calcite crystal, with o.a. being the optical axis. (b) Analog birefringent radial plate geometry. (c) Experimental setup: A, axicon; L, lens; C, calcite crystal; X—QWP, HWP, or nothing; Q, quartz crystal (used only for the vectorial case, see text); WP, Wollaston prism.

Fig. 2
Fig. 2

(a) Total phase delay Φ versus the internal angle of incidence θ. Horizontal bars refer to the explored range associated with the focal length f of the first lens [see Fig. 1c]. (b) Transfer of normalized powers between the circular components parallel ( P ̃ ) and orthogonal ( P ̃ ) to the incident circular polarization state versus Φ: markers, experimental data; solid curves, theory. (c) Enlargement near Φ HWP = π .

Fig. 3
Fig. 3

(a) Experimental intensity profile of the ring-shaped beam obtained after the pair of axicons (inset) and its cross-section fitted by a Gaussian function of waist diameter d. (b) Total ( Δ θ ) and diffraction ( Δ θ diff ) and lens ( Δ θ lens ) parts of the angular spreading versus d. The gray area corresponds to the range of values explored by Δ θ when the focal length f is varied from 100 (dashed curves) to 500 (solid curves) mm.

Fig. 4
Fig. 4

Azimuthal dependence of the reduced Stokes parameters s 1 and s 2 , and polarization azimuth ψ for (a) c + and (b) c polarized incident beams: markers, experimental data; solid curves, theory.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ = 2 π λ L cos   θ [ n o n e ( θ ) ] ,
P ̃ = cos 2 ( Φ / 2 ) ,     P ̃ = sin 2 ( Φ / 2 ) .
Φ = 1 2 Δ θ θ Δ θ θ + Δ θ Φ ( θ ) d θ ,

Metrics