Abstract

Silicon thin film with a nanopore textured surface is systematically studied via simulation for photovoltaic application, where the optical characteristics are closely correlated with the nanopore structural parameters. It is found that the solar energy absorption could be optimized when the nanopore array structure dimensions are set as follows: periodicity of 700nm, depth of 2000nm, and pore diameter versus periodicity ratio of 87.5%. The result provides an additional guideline for the nanostructure surface texturing-process design for photovoltaic applications.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics

Kwang-Tae Park, Zhongyi Guo, Han-Don Um, Jin-Young Jung, Jun Mo Yang, Sung Kyu Lim, Young Su Kim, and Jung-Ho Lee
Opt. Express 19(S1) A41-A50 (2011)

Symmetry-breaking nanostructures on crystalline silicon for enhanced light trapping in thin film solar cells

Seok Jun Han, Swapnadip Ghosh, Omar K. Abudayyeh, Brittany R. Hoard, Ethan C. Culler, Jose E. Bonilla, Sang M. Han, and Sang Eon Han
Opt. Express 24(26) A1586-A1596 (2016)

Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications

Qing Guo Du, Chan Hin Kam, Hilmi Volkan Demir, Hong Yu Yu, and Xiao Wei Sun
Opt. Lett. 36(9) 1713-1715 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription