Abstract

The dependence of the Brillouin frequency shift (BFS) on UV-cured acrylate coating and uncoated fibers for media that have different water vapor concentrations is experimentally investigated. The BFS is proportional to the temperature within the fiber, but it also depends on the water vapor contained in the surroundings of the fiber. A hypothesis based on the efficiency of the heat transfer due to the different humidity concentration in the media is proposed, and the temperature difference that depends on the heat transfer is quantified in standard fibers. A shift of 0.22MHz for relative humidity change between 60% and 98% at 20°C is measured.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  3. C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.
  4. C. Galindez, F. Madruga, and J. M. Lopez-Higuera, IEEE Photonics Technol. Lett. 20, 1959 (2008).
    [CrossRef]
  5. T. Kurishima, T. Horiguchi, and M. Tateda, Appl. Opt. 29, 2219 (1990).
    [CrossRef]
  6. J. Rayss, W. M. PodkoCielny, and J. Widomski, J. Appl. Polym. Sci. 49, 835 (1993).
    [CrossRef]
  7. S. L. Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
    [CrossRef]
  8. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
    [CrossRef]
  9. F. Incropera, Fundamentals of Heat and Mass Transfer, 2nd ed. (Wiley, 2002).

2008 (1)

C. Galindez, F. Madruga, and J. M. Lopez-Higuera, IEEE Photonics Technol. Lett. 20, 1959 (2008).
[CrossRef]

2003 (1)

S. L. Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

1993 (2)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
[CrossRef]

J. Rayss, W. M. PodkoCielny, and J. Widomski, J. Appl. Polym. Sci. 49, 835 (1993).
[CrossRef]

1990 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cambon, P.

S. L. Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
[CrossRef]

Cobo, A.

C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
[CrossRef]

Floch, S. L.

S. L. Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

Galindez, C.

C. Galindez, F. Madruga, and J. M. Lopez-Higuera, IEEE Photonics Technol. Lett. 20, 1959 (2008).
[CrossRef]

C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.

Horiguchi, T.

Incropera, F.

F. Incropera, Fundamentals of Heat and Mass Transfer, 2nd ed. (Wiley, 2002).

Kurishima, T.

Lomer, M.

C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.

Lopez-Higuera, J. M.

C. Galindez, F. Madruga, and J. M. Lopez-Higuera, IEEE Photonics Technol. Lett. 20, 1959 (2008).
[CrossRef]

C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.

Madruga, F.

C. Galindez, F. Madruga, and J. M. Lopez-Higuera, IEEE Photonics Technol. Lett. 20, 1959 (2008).
[CrossRef]

C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.

PodkoCielny, W. M.

J. Rayss, W. M. PodkoCielny, and J. Widomski, J. Appl. Polym. Sci. 49, 835 (1993).
[CrossRef]

Rayss, J.

J. Rayss, W. M. PodkoCielny, and J. Widomski, J. Appl. Polym. Sci. 49, 835 (1993).
[CrossRef]

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
[CrossRef]

Tateda, M.

Widomski, J.

J. Rayss, W. M. PodkoCielny, and J. Widomski, J. Appl. Polym. Sci. 49, 835 (1993).
[CrossRef]

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

C. Galindez, F. Madruga, and J. M. Lopez-Higuera, IEEE Photonics Technol. Lett. 20, 1959 (2008).
[CrossRef]

J. Appl. Polym. Sci. (1)

J. Rayss, W. M. PodkoCielny, and J. Widomski, J. Appl. Polym. Sci. 49, 835 (1993).
[CrossRef]

Opt. Commun. (1)

S. L. Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

Other (4)

J.López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

C. Galindez, F. Madruga, M. Lomer, A. Cobo, J. M. Lopez-Higuera, presented at the 19th International Conference on Optical Fiber Sensors, April 14-18, 2008, Perth, Australia.

F. Incropera, Fundamentals of Heat and Mass Transfer, 2nd ed. (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. EOM, Electro-optic modulator; A&P, analysis and processing; EDFA, erbium-doped fiber amplifier; O/E, optical-to-electrical converter.

Fig. 2
Fig. 2

Experimental data for RH of 60% and 98%. squares, coated fiber; circles, uncoated fiber.

Fig. 3
Fig. 3

BWS (up) and BFS (down) measured under the same conditions. ν B 0 and λ 0 are the BFS and the BWS at 20 ° C and 50% of RH.

Fig. 4
Fig. 4

Scheme of thermal interaction of the fiber.

Fig. 5
Fig. 5

BFS as a function of RH for T out of 25 ° C (squares) and 50 ° C (diamonds).

Tables (1)

Tables Icon

Table 1 Summary of Experimental Data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν B C T = Δ T B = Δ T Bragg = Δ λ Bragg λ Bragg 1 [ ( 1 P e ) α + ξ ] .
( T T out ) ( t ) = ( T 0 + q i d 4 h ) e t 4 h d ρ c q i d 4 h ( L eff L ) ,

Metrics