Abstract

A dual-wavelength laser speckle contrast imaging technique (DW-LSCI) is presented for simultaneous imaging of cerebral blood flow and hemoglobin oxygenation changes at high spatiotemporal resolutions. Experimental validation was performed using a rat transient forebrain ischemia model. The results showed that DW-LSCI was able to track detailed hemodynamic and metabolic changes induced by ischemia, i.e., decreased oxy- and total hemoglobin concentrations and blood flow as well as increased deoxy-hemoglobin concentration in the downstream regions, thus allowing us to distinguish cerebral arterial and venous flows. Simultaneous cerebral blood flow and oxygenation imaging at high spatiotemporal resolutions is crucial to the understanding of neural process and brain functions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, Opt. Lett. 28, 28 (2003).
    [CrossRef] [PubMed]
  2. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
    [CrossRef]
  3. C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
    [CrossRef] [PubMed]
  4. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
    [CrossRef] [PubMed]
  5. S. Takatani and M. D. Graham, IEEE Trans. Biomed. Eng. 26, 656 (1987).
    [CrossRef]
  6. Z. Luo, Z. Wang, Z. Yuan, C. Du, and Y. Pan, Opt. Lett. 33, 1156 (2008).
    [CrossRef] [PubMed]
  7. J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
    [CrossRef]
  8. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
    [CrossRef]
  9. R. Hebel and M. W. Stromberg, Anatomy and Embryology of the Laboratory Rat (Biomed Verlag, 1986).

2008 (1)

2007 (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

2005 (2)

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

2003 (1)

2001 (1)

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

1987 (1)

S. Takatani and M. D. Graham, IEEE Trans. Biomed. Eng. 26, 656 (1987).
[CrossRef]

Andermann, M. L.

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Benveniste, H.

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
[CrossRef] [PubMed]

Berwick, J.

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
[CrossRef] [PubMed]

Boas, D. A.

Bolay, H.

Briers, J. D.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

Dale, A. M.

Devor, A.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Du, C.

Z. Luo, Z. Wang, Z. Yuan, C. Du, and Y. Pan, Opt. Lett. 33, 1156 (2008).
[CrossRef] [PubMed]

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
[CrossRef] [PubMed]

Dunn, A. K.

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Graham, M. D.

S. Takatani and M. D. Graham, IEEE Trans. Biomed. Eng. 26, 656 (1987).
[CrossRef]

Hebel, R.

R. Hebel and M. W. Stromberg, Anatomy and Embryology of the Laboratory Rat (Biomed Verlag, 1986).

Izrailtyan, I.

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
[CrossRef] [PubMed]

Johnston, D.

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
[CrossRef] [PubMed]

Jones, M.

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
[CrossRef] [PubMed]

Koretsky, A. P.

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
[CrossRef] [PubMed]

Luo, Z.

Maslov, K.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Mayhew, J.

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
[CrossRef] [PubMed]

Moskowitz, M. A.

Pan, Y.

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Stromberg, M. W.

R. Hebel and M. W. Stromberg, Anatomy and Embryology of the Laboratory Rat (Biomed Verlag, 1986).

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Takatani, S.

S. Takatani and M. D. Graham, IEEE Trans. Biomed. Eng. 26, 656 (1987).
[CrossRef]

Wang, L. H.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Wang, Z.

Webster, S.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

Yuan, Z.

Zhang, H. F.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. Takatani and M. D. Graham, IEEE Trans. Biomed. Eng. 26, 656 (1987).
[CrossRef]

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, J. Cereb. Blood Flow Metab. 25, 1078 (2005).
[CrossRef] [PubMed]

Neuroimage (1)

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, Neuroimage 13, 1002 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Other (1)

R. Hebel and M. W. Stromberg, Anatomy and Embryology of the Laboratory Rat (Biomed Verlag, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch illustrating the DW-LSCI setup. LD1, LD2, laser diodes at λ 1 = 785 nm , λ 2 = 830 nm ; CL, collimator ( f = 20 mm ) ; BS, beam splitter; M, mirror, CH, chopper.

Fig. 2
Fig. 2

(a) Snapshot of DW-LSCI flow image of rat cortex. The dashed circle (red online) shows the cranial window region for quantitative analysis. H, T, L: head, tail, and lateral directions, respectively. Panels (b)–(f): traces of relative cerebral blood flow changes (solid curves) and Δ [ Hb O 2 ] (crosses), Δ [ HbR ] (asterisks), and Δ [ HbT ] (circles) in the selected (b) large ( ϕ 220 μ m ) and (c) small ( ϕ 65 μ m ) (e) venous ( ϕ 50 μ m ) , (f) arterial ( ϕ 38 μ m ) , and (d) perfused tissue regions as pointed by arrows. The two dashed vertical lines indicate the onset of ischemia ( t = 0 s ) and reperfusion ( t = 336 s ) periods. Right (red online) y axis, Δ [ Hb ] ( × 0.1 mM ) ; left (blue online) y axis, relative flow changes (%).

Fig. 3
Fig. 3

Time-lapse DW-LSCI flow images of rat cortex undergoing cerebral ischemia ( t = 0 336 s ) and reperfusion. Image size: 3.7 mm × 5.1 mm . Arterial and venous flow rates and tissue perfusion rate were color coded in red, blue, and green, respectively. The black shadow is the region out of the cranial window. Detailed time-course changes were shown in Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K = { τ C T + τ C 2 2 T 2 [ exp ( 2 T τ C ) 1 ] } 1 / 2 ,
[ Δ [ Hb O 2 ( t ) ] Δ [ HbR ( t ) ] ] = [ ε Hb O 2 λ 1 ε HbR λ 1 ε Hb O 2 λ 2 ε HbR λ 2 ] 1 [ ln ( R λ 1 ( 0 ) R λ 1 ( t ) ) L λ 1 ( t ) ln ( R λ 2 ( 0 ) R λ 2 ( t ) ) L λ 2 ( t ) ] ,
t 1 2 = R i R b [ ( n i 1 ) σ i 2 + ( n b 1 ) σ b 2 n i n b ( n i + n b 2 ) / ( n i + n b ) ] 1 / 2 ,

Metrics