Abstract

We propose and demonstrate a temperature sensing method using an all-silicon carbide probe that combines wavelength-tuned signal processing for coarse measurements and classical Fabry–Perot etalon peak shift for fine measurements. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. Specifically, temperature measurements from room temperature to 1000°C are experimentally demonstrated with an estimated resolution varying from 0.66°C at room temperature to 0.12°C at 1000°C. The proposed sensor has applications in next-generation greener gas turbines for power production.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.
  2. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.
  3. Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004).
    [CrossRef]
  4. G. Beheim, Electron. Lett. 22, 238 (1986).
    [CrossRef]
  5. L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003).
    [CrossRef]
  6. O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
    [CrossRef]
  7. G. L. DesAutels, P. Powers, C. Brewer, M. Walker, M. Burky, and G. Anderson, Appl. Opt. 47, 3773 (2008).
    [CrossRef] [PubMed]
  8. N. A. Riza and M. Sheikh, Opt. Lett. 33, 1129 (2008).
    [CrossRef] [PubMed]
  9. W.Martienssen and H.Warlimont, eds., Handbook of Condensed Matter and Materials Data, and (Springer, 2005), Vol. XVII.
    [CrossRef]

2008 (2)

2004 (1)

Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004).
[CrossRef]

2003 (1)

L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003).
[CrossRef]

1995 (1)

O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
[CrossRef]

1986 (1)

G. Beheim, Electron. Lett. 22, 238 (1986).
[CrossRef]

Anderson, G.

Beheim, G.

G. Beheim, Electron. Lett. 22, 238 (1986).
[CrossRef]

Brewer, C.

Burky, M.

Cheng, L.

L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003).
[CrossRef]

DesAutels, G. L.

Ding, H.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.

Käding, O. W.

O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
[CrossRef]

Matthias, E.

O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
[CrossRef]

Maznev, A. A.

O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
[CrossRef]

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.

Pickrell, G. R.

Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004).
[CrossRef]

Powers, P.

Qi, B.

Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004).
[CrossRef]

Riza, N. A.

Scofield, J.

L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003).
[CrossRef]

Sheikh, M.

Skurk, H.

O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
[CrossRef]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.

Steckl, A. J.

L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003).
[CrossRef]

Walker, M.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.

Zhang, Y.

Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

O. W. Käding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995).
[CrossRef]

Electron. Lett. (1)

G. Beheim, Electron. Lett. 22, 238 (1986).
[CrossRef]

IEEE Trans. Electron Devices (1)

L. Cheng, A. J. Steckl, and J. Scofield, IEEE Trans. Electron Devices 50, 2159 (2003).
[CrossRef]

Opt. Eng. (Bellingham) (1)

Y. Zhang, G. R. Pickrell, and B. Qi, Opt. Eng. (Bellingham) 43, 157 (2004).
[CrossRef]

Opt. Lett. (1)

Other (3)

W.Martienssen and H.Warlimont, eds., Handbook of Condensed Matter and Materials Data, and (Springer, 2005), Vol. XVII.
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, in Proceedings of the European Conference on Optical Communication (ECOC) (2004), Vol. 2, p. 130.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, in ECOC Proceedings (2004), Vol. 2 , p. 128.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

All-SiC probe hybrid wireless–wired optical sensor for extreme temperature measurements.

Fig. 2
Fig. 2

Experiment 1 measured coarse temperature sensing Δ λ versus T stepwise curve with k = 60 .

Fig. 3
Fig. 3

Computed and experimentally measured (11 data points from experiment 1 and 17 data points from experiment 2) λ peak versus temperature curve for fine temperature sensing.

Tables (1)

Tables Icon

Table 1 Measured Experiment 1 Temperature T Using the Proposed Temperature Sensor and R-type TC

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R FP = R 1 + R 2 + 2 R 1 R 2   cos   φ 1 + R 1 R 2 + 2 R 1 R 2   cos   φ .
Δ λ = k 2 t [ B C n 1 ( λ 1 2 C ) 2 + n 1 λ 1 2 ] ,
4 π λ peak n ( λ peak , T ) t ( T ) = 2 m π ,
Δ n λ B C n ( λ 2 C ) 2 Δ λ .
λ peak = 2 t m [ n 1 + λ 1 2 B C n 1 ( λ 1 2 C ) 2 ] 1 + 2 t λ 1 B C m n 1 ( λ 1 2 C ) 2 .

Metrics