Abstract

The decay time of an exciton depends on the coupling between the dipole oscillator and the optical environment in which it is placed. For an organic light-emitting device this environment is determined by the thin-film layer structure. The radiative decay competes with nonradiative decay channels and in this way influences the luminescent efficiency and the external quantum efficiency of the device. We describe a method to estimate the dependency of the exciton decay time and the luminescent efficiency on the thin-film stack and validate the results experimentally.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002).
    [CrossRef]
  2. R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974).
    [CrossRef]
  3. Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
    [CrossRef]
  4. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
    [CrossRef]
  5. K. Neyts, J. Opt. Soc. Am. A 15, 962 (1998).
    [CrossRef]
  6. S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
    [CrossRef]
  7. K. Neyts, Appl. Surf. Sci. 244, 517 (2005).
    [CrossRef]
  8. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
    [CrossRef]
  9. S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
    [CrossRef]
  10. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
    [CrossRef]
  11. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
    [CrossRef]

2008

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

2007

S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
[CrossRef]

2006

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

2005

K. Neyts, Appl. Surf. Sci. 244, 517 (2005).
[CrossRef]

2004

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

2002

N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002).
[CrossRef]

2000

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
[CrossRef]

1998

1993

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[CrossRef]

1974

R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974).
[CrossRef]

Adachi, C.

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
[CrossRef]

Baldo, M. A.

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
[CrossRef]

Birnstock, J.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Brütting, W.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

Burroughes, J. H.

N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002).
[CrossRef]

Chance, R. C.

R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974).
[CrossRef]

Cina, S.

N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002).
[CrossRef]

Forrest, S. R.

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
[CrossRef]

Frischeisen, J.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

He, G.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Higashi, H.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[CrossRef]

Hofmann, M.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Hosokawa, C.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[CrossRef]

Huang, Q.

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

Krummacher, B. C.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

Kusumoto, T.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[CrossRef]

Leo, K.

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
[CrossRef]

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Lindner, F.

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

Neyts, K.

K. Neyts, Appl. Surf. Sci. 244, 517 (2005).
[CrossRef]

K. Neyts, J. Opt. Soc. Am. A 15, 962 (1998).
[CrossRef]

Nowy, S.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

Patel, N. K.

N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002).
[CrossRef]

Pfeiffer, M.

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Prock, A.

R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974).
[CrossRef]

Pudzrich, R.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Reineke, S.

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
[CrossRef]

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

Reinke, N. A.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

Salbeck, J.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

Schwartz, G.

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

Silbey, R.

R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974).
[CrossRef]

Tokailin, H.

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[CrossRef]

Walzer, K.

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
[CrossRef]

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

Appl. Phys. Lett.

Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006).
[CrossRef]

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzrich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[CrossRef]

C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[CrossRef]

Appl. Surf. Sci.

K. Neyts, Appl. Surf. Sci. 244, 517 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. K. Patel, S. Cina, and J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 8, 346 (2002).
[CrossRef]

J. Appl. Phys.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

J. Chem. Phys.

R. C. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974).
[CrossRef]

J. Opt. Soc. Am. A

Phys. Rev. B

S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
[CrossRef]

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
[CrossRef]

Phys. Status Solidi B

S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Phys. Status Solidi B 245, 804 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Different LSs for which the decay time was measured in EL or PL. For every LS one or more EMLs were used. EML stands for green TCTA : Ir ( ppy ) 3 , blue TCTA:FIrpic, or red NPB : Ir ( piq ) 3 .

Fig. 2
Fig. 2

(a) Decay signals for different LSs containing the blue emitter FIrpic. For better visibility, each decay curve is shifted over 1 μ s , compared to the previous one. Photoexcitation for LS1 and EL transient emission for LS2, LS4, LS5, and LS6. Solid lines are best fits of the long-living monoexponential decay. The decay time τ LS is displayed for every LS as extracted from the fit. (b) Inverse of the measured exciton decay time ( 1 / τ LS ) (points) versus the simulated value of F LS for the three emitter materials: green TCTA : Ir ( ppy ) 3 , blue TCTA:FIrpic, and red NPB : Ir ( piq ) 3 and for the LSs LS1–LS6. The lines show the least-squares fit for the three emitter materials corresponding to Eq. (2).

Tables (1)

Tables Icon

Table 1 Intrinsic Radiative Decay Rate Γ r 0 and Intrinsic Nonradiative Decay Rate Γ n r 0 a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 τ 0 = Γ 0 = Γ r 0 + Γ n r 0 ,
1 τ LS = Γ LS = F LS Γ r 0 + Γ n r 0 ,
F LS = λ 1 λ 2 S 0 ( λ ) d λ 0 K ( κ , λ ) d κ 2 .

Metrics