Abstract

A cladding-modulated Bragg grating implemented using periodic placements of cylinders along a waveguide is proposed in a silicon-on-insulator platform. The coupling strength is varied by changing the distance between the cylinders and the waveguide. This implementation enables precise control and a wide dynamic range of coupling strengths and bandwidths that can be practically achieved for applications with specific bandwidth requirements. Modeling results are verified experimentally, and we demonstrate coupling strengths differing by 1 order of magnitude (43 and 921  per  cm) with bandwidths of 8 and 16nm, respectively. This method scheme enables weakly coupled devices with high fabrication tolerance to be realized.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]
  3. H. C. Kim, K. Ikeda, and Y. Fainman, Opt. Lett. 32, 539 (2007).
    [CrossRef] [PubMed]
  4. K. Ikeda, M. Nezhad, and Y. Fainman, Appl. Phys. Lett. 92, 201111 (2008).
    [CrossRef]
  5. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, Opt. Lett. 33, 3013 (2008).
    [CrossRef] [PubMed]
  6. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
    [CrossRef]
  7. T. E. Murphy, J. T. Hastings, and H. I. Smith, J. Lightwave Technol. 19, 1938 (2001).
    [CrossRef]
  8. A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
    [CrossRef]
  9. W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975).
    [CrossRef]
  10. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
    [CrossRef]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]

2008

2007

2003

2002

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
[CrossRef]

2001

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

1975

W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975).
[CrossRef]

1974

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

1973

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

Almeida, V. R.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Burnham, R. D.

W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Fainman, Y.

Flanders, D. C.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Goodberlet, J. G.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
[CrossRef]

Hastings, J. T.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, J. Lightwave Technol. 19, 1938 (2001).
[CrossRef]

Ikeda, K.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Kim, H. C.

Kogelnik, H.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Koo, L. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Lim, M. H.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
[CrossRef]

Lipson, M.

Murphy, T. E.

Nezhad, M.

K. Ikeda, M. Nezhad, and Y. Fainman, Appl. Phys. Lett. 92, 201111 (2008).
[CrossRef]

Panepucci, R. R.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Saperstein, R. E.

Schmidt, R. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Scifres, D. R.

W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975).
[CrossRef]

Shank, C. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Slutsky, B.

Smith, H. I.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, J. Lightwave Technol. 19, 1938 (2001).
[CrossRef]

Streifer, W.

W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975).
[CrossRef]

Tan, D. T. H.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

Appl. Phys. Lett.

K. Ikeda, M. Nezhad, and Y. Fainman, Appl. Phys. Lett. 92, 201111 (2008).
[CrossRef]

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

W. Streifer, D. R. Scifres, and R. D. BurnhamIEEE J. Quantum Electron. QE-11, 867 (1975).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, J. Lightwave Technol. 19, 1938 (2001).
[CrossRef]

J. Vac. Sci. Technol. B

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, J. Vac. Sci. Technol. B 20, 2753 (2002).
[CrossRef]

Opt. Lett.

Other

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of C-DRS. Waveguide height a and width b are 250 and 500 nm , respectively. Buried oxide layer thickness = 3 μ m . Si O 2 overcladding thickness = 2 μ m .

Fig. 2
Fig. 2

Δ λ (red online) and κ (black) for W = 200 nm and L = 100 μ m as a function of d calculated using CMT (solid curve) and FDTD (circles). Experimental Δ λ and κ for devices A and B are marked with squares.

Fig. 3
Fig. 3

2D FDTD simulation results. Transmission for (a) L = 100 μ m , d = 200 nm , W = 200 nm , Λ B = 300 nm (device A) and (b) for L = 70 μ m , d = 50 nm , W = 200 nm , Λ B = 295 nm (device B).

Fig. 4
Fig. 4

SEM micrographs of fabricated devices.

Fig. 5
Fig. 5

Measured transmission for (a) device A and (b) device B.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ = k o 2 n eff Δ n 2 × E 2 d x d y E 2 d x d y ,
Δ λ = λ 2 n g × L [ 1 + ( κ × L π ) 2 ] 1 2 ,

Metrics