Abstract

Significant improvement of the thermal stability of the hologram recorded on photochromic materials had been achieved via covalent bonding of the photochromic dye to the polymer matrix as compared to the host–guest systems. For the photochromic materials with covalent bonding of the dye to the polymer matrix the level of thermal stability is demonstrated such that at temperatures (T) ca. 100°C there was no detectable diffusion-type degradation of the hologram’s diffraction efficiency after 6h of exposure to elevated T. The same heating of the hologram in photochromic host–guest polymer led to a full hologram erasure within 40min.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
    [CrossRef]
  2. J.-W. Kang, F. Kim, and J.-J. Kim, Opt. Mater. 21, 543 (2003).
    [CrossRef]
  3. M. Irie and K. Uchida, Bull. Chem. Soc. Jpn. 71, 985 (1998).
    [CrossRef]
  4. M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
    [CrossRef] [PubMed]
  5. Y. Boiko, Opt. Mem. Neural Networks 17, 30 (2008).
  6. K. E. Maly, M. D. Wand, and R. P. Lemieux, J. Am. Chem. Soc. 124, 7898 (2002).
    [CrossRef] [PubMed]
  7. G. W. Burr, in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2002).

2008 (2)

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Y. Boiko, Opt. Mem. Neural Networks 17, 30 (2008).

2003 (1)

J.-W. Kang, F. Kim, and J.-J. Kim, Opt. Mater. 21, 543 (2003).
[CrossRef]

2002 (1)

K. E. Maly, M. D. Wand, and R. P. Lemieux, J. Am. Chem. Soc. 124, 7898 (2002).
[CrossRef] [PubMed]

2001 (1)

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

1998 (1)

M. Irie and K. Uchida, Bull. Chem. Soc. Jpn. 71, 985 (1998).
[CrossRef]

Boiko, Y.

Y. Boiko, Opt. Mem. Neural Networks 17, 30 (2008).

Bougdid, L.

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Burr, G. W.

G. W. Burr, in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2002).

Cipolloni, M.

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Favaro, G.

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Irie, M.

M. Irie and K. Uchida, Bull. Chem. Soc. Jpn. 71, 985 (1998).
[CrossRef]

Kalinina, O.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

Kang, J.-W.

J.-W. Kang, F. Kim, and J.-J. Kim, Opt. Mater. 21, 543 (2003).
[CrossRef]

Kim, F.

J.-W. Kang, F. Kim, and J.-J. Kim, Opt. Mater. 21, 543 (2003).
[CrossRef]

Kim, J.-J.

J.-W. Kang, F. Kim, and J.-J. Kim, Opt. Mater. 21, 543 (2003).
[CrossRef]

Kumacheva, E.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

Lemieux, R. P.

K. E. Maly, M. D. Wand, and R. P. Lemieux, J. Am. Chem. Soc. 124, 7898 (2002).
[CrossRef] [PubMed]

Maly, K. E.

K. E. Maly, M. D. Wand, and R. P. Lemieux, J. Am. Chem. Soc. 124, 7898 (2002).
[CrossRef] [PubMed]

Mazzucato, U.

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Miller, R. J. D.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

Moustrou, C.

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Noolandi, J.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

Ortica, F.

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Siwick, B. J.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

Uchida, K.

M. Irie and K. Uchida, Bull. Chem. Soc. Jpn. 71, 985 (1998).
[CrossRef]

Wand, M. D.

K. E. Maly, M. D. Wand, and R. P. Lemieux, J. Am. Chem. Soc. 124, 7898 (2002).
[CrossRef] [PubMed]

Bull. Chem. Soc. Jpn. (1)

M. Irie and K. Uchida, Bull. Chem. Soc. Jpn. 71, 985 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

K. E. Maly, M. D. Wand, and R. P. Lemieux, J. Am. Chem. Soc. 124, 7898 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).
[CrossRef]

J. Phys. Chem. A (1)

M. Cipolloni, F. Ortica, L. Bougdid, C. Moustrou, U. Mazzucato, and G. Favaro, J. Phys. Chem. A 1124765 (2008).
[CrossRef] [PubMed]

Opt. Mater. (1)

J.-W. Kang, F. Kim, and J.-J. Kim, Opt. Mater. 21, 543 (2003).
[CrossRef]

Opt. Mem. Neural Networks (1)

Y. Boiko, Opt. Mem. Neural Networks 17, 30 (2008).

Other (1)

G. W. Burr, in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Chemical structure, photochromic transformation of diarylethene dye KMV-129A (here R 1 is C 4 H 9 O - and R 2 is O C 4 H 8 O O C C H C H 2 ) of chemical structure acryl-1,2-bis-[ 5 - 4 -butyl-oxy-phenyl)- 2 -methyl- thien- 3 -yl) per-fluoro-cyclo-pentene. An initial state A transforms into B via UV light absorption while reverse transition occurs via absorption of visible light. Below is the absorption spectra of the photochromic dye KMV-129A attached to the polymer matrix (concentration 0.15 M ; sample thickness ca. 30 μ m ).

Fig. 2
Fig. 2

Comparison of thermal degradation of the photo-chromic holograms based on diarylethene dye KMV-129 host–guest system (plots 1, 2, and 3) with that for covalently bonded to polymer matrix dye KMV-129A (plots 4 and 5): 1, at 57 ° C ; 2, at 95 ° C ; 3, at room T; 4, at 100 ° C ; 5, stability at room T. Enhanced long-term thermal stability of the recorded holograms is seen for the covalently bonded system ( Λ = 2000 mm 1 , d = 1.3 mm ).

Metrics