Abstract

We propose and demonstrate a compact microring-assisted directional coupler in the silicon-on-insulator material system. An analytical model based on the strongly coupled mode theory shows that the device can be designed to have a wide range of spectral characteristics, including sharp asymmetric Fano line shapes, which can be used for WDM, switching, and sensing applications. The measured transmission spectra of the fabricated device with a 5-μm-radius microring resonator exhibited an asymmetric spectral response characteristic of the Fano resonance as predicted by the analytical model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
    [CrossRef]
  2. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
    [CrossRef]
  3. M. Lipson, IEEE J. Sel. Top. Quantum Electron. 12, 1520 (2006).
    [CrossRef]
  4. C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
    [CrossRef]
  5. S. Fan, Appl. Phys. Lett. 80, 908 (2002).
    [CrossRef]
  6. S.-L. Chuang, IEEE J. Quantum Electron. 33, 499 (1987).
    [CrossRef]
  7. R. P. Rau, Phys. Scr. 69, C10 (2004).
    [CrossRef]

2006

M. Lipson, IEEE J. Sel. Top. Quantum Electron. 12, 1520 (2006).
[CrossRef]

2004

R. P. Rau, Phys. Scr. 69, C10 (2004).
[CrossRef]

2003

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

2002

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

2000

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
[CrossRef]

1987

S.-L. Chuang, IEEE J. Quantum Electron. 33, 499 (1987).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Chao, C. Y.

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
[CrossRef]

Chuang, S.-L.

S.-L. Chuang, IEEE J. Quantum Electron. 33, 499 (1987).
[CrossRef]

Fan, S.

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Guo, L. J.

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

Ho, P. T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Kokubun, Y.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
[CrossRef]

Lipson, M.

M. Lipson, IEEE J. Sel. Top. Quantum Electron. 12, 1520 (2006).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
[CrossRef]

Pan, W.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
[CrossRef]

Rau, R. P.

R. P. Rau, Phys. Scr. 69, C10 (2004).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Appl. Phys. Lett.

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

IEEE J. Quantum Electron.

S.-L. Chuang, IEEE J. Quantum Electron. 33, 499 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Lipson, IEEE J. Sel. Top. Quantum Electron. 12, 1520 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, IEEE Photon. Technol. Lett. 12, 323 (2000).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Phys. Scr.

R. P. Rau, Phys. Scr. 69, C10 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a MR-DC device with coupling length L DC = L 1 + L 2 + L 3 .

Fig. 2
Fig. 2

Computed responses at the through port ( T t ) and cross port ( T x ) of a MR-DC with (a), (b) fixed L 2 = 0.5 μ m and varied L DC ; (c), (d) fixed L DC = 3 L c 4 and varied L 2 . The resonances have been shifted so they align at φ r t = 0 .

Fig. 3
Fig. 3

(a) Scanning electron micrograph image of a 5 μ m radius SOI MR-DC device; (b), (c) measured transmission spectra at the through port ( T t ) and cross port ( T x ) of the device. The dashed curves are the theoretical curve fits.

Fig. 4
Fig. 4

Schematic of a 3 × 3 WDM cross-connect grid using MR-DC structures. Resonant wavelengths are indicated for each microring. The input wavelengths are at the left, and the output wavelengths are shown at the top.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S i = [ t i j r i j r i t i ] ( i = 1 , 3 ) ,
[ a 2 b 2 c 2 ] = e j β 2 L 2 [ t 11 e j φ 1 j r 12 r 13 e j φ 3 j r 21 t 22 e j φ 2 j r 21 r 13 e j φ 3 j r 12 t 11 e j φ 1 ] [ a 1 b 1 c 1 ] = e j β 2 L 2 K [ a 1 b 1 c 1 ] ,
[ a 2 b 2 ] = e j β 2 L 2 S 2 [ a 1 b 1 ] ,
S 2 = [ K 11 K 12 K 21 K 22 ] + e j φ r t 1 K 33 e j φ r t [ K 13 K 31 K 13 K 32 K 23 K 31 K 23 K 32 ] .

Metrics