Abstract

We propose an algorithm that converts a full-parallax hologram to a horizontal-parallax-only (HPO) hologram for 3D display. We first record a full-parallax hologram of an object. Subsequently, we filter the hologram with a Gaussian low-pass filter and a fringe-matched filter along the vertical direction. The final filtered output becomes an HPO hologram. To the best of our knowledge, this is the first algorithm proposed for converting full-parallax holographic information to HPO-holographic information.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. Hilaire, S. A. Benton, and M. Lucente, J. Opt. Soc. Am. A 9, 1969 (1992).
    [CrossRef]
  2. H. Yoshikawa and H. Taniguchi, Opt. Rev. 6, 118 (1999).
    [CrossRef]
  3. T.-C. Poon, J. Soc. Inf. Disp. 3, 12 (2002).
  4. T.-C. Poon, T. Akin, G. Indebetouw, and T. Kim, Opt. Express 13, 2427 (2005).
    [CrossRef] [PubMed]
  5. N. T. Shaked and J. Rosen, Appl. Opt. 47, D21 (2008).
    [CrossRef] [PubMed]
  6. T.-C. Poon, T. Kim, G. Indebetouw, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Lett. 25, 215 (2000).
    [CrossRef]

2008 (1)

2005 (1)

2002 (1)

T.-C. Poon, J. Soc. Inf. Disp. 3, 12 (2002).

2000 (1)

1999 (1)

H. Yoshikawa and H. Taniguchi, Opt. Rev. 6, 118 (1999).
[CrossRef]

1992 (1)

Akin, T.

Benton, S. A.

Hilaire, P. St.

Indebetouw, G.

Kim, T.

Lucente, M.

Poon, T.-C.

Rosen, J.

Shaked, N. T.

Shinoda, K.

Suzuki, Y.

Taniguchi, H.

H. Yoshikawa and H. Taniguchi, Opt. Rev. 6, 118 (1999).
[CrossRef]

Wu, M. H.

Yoshikawa, H.

H. Yoshikawa and H. Taniguchi, Opt. Rev. 6, 118 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Full-parallax FZP, (b) asymmetrical FZP.

Fig. 2
Fig. 2

Optical scanning holographic recording: M, mirrors; AOFS1,2, acousto-optical frequency shifters; BS1,2, beam splitters; BE1,2, beam expanders; L1, focusing lens; θ, half-cone angle subtended by the FZP; L2, collecting lens; PD, photodetector; ⊗, electronic multiplier; LPF, low-pass filter).

Fig. 3
Fig. 3

(a) Real part of the full-parallax hologram ( 1.8 cm by 1.8 cm ), (b) imaginary part of the full-parallax hologram ( 1.8 cm by 1.8 cm ).

Fig. 4
Fig. 4

(a) Real part of the HPO hologram ( 1.8 cm by 1.8 cm ), (b) imaginary part of the HPO hologram ( 1.8 cm by 1.8 cm ).

Fig. 5
Fig. 5

(a) Reconstructed image at the front slide location ( 1.8 cm by 1.8 cm ), (b) reconstructed image at the back slide location ( 1.8 cm by 1.8 cm ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H full ( x , y ) = z o Δ z z o + Δ z I o ( x , y , z ) j λ z exp { ( π NA 2 z 2 + j π λ z ) ( x 2 + y 2 ) } d z ,
H full ( k x , k y ) = F { H full ( x , y ) } = z o Δ z z o + Δ z I o ( k x , k y , z ) exp { [ 1 4 π ( λ NA ) 2 + j λ z 4 π ] ( k x 2 + k y 2 ) } d z ,
H asym FZP ( k x , k y ) = H full ( k x , k y ) G low -pass ( k x , k y ) = z o Δ z z o + Δ z I o ( k x , k y , z ) exp [ { 1 4 π ( λ NA ) 2 + j λ z 4 π } k x 2 + { 1 4 π ( λ NA lp ) 2 + j λ z 4 π } k y 2 ] d z ,
H HPO ( k x , k y ) = H asym FZP ( k x , k y ) F fm ( k x , k y ) = z o Δ z z o + Δ z I o ( k x , k y , z ) exp [ { 1 4 π ( λ NA ) 2 + j λ z 4 π } k x 2 + { 1 4 π ( λ NA lp ) 2 + j λ ( z z o ) 4 π } k y 2 ] d z .
H HPO ( k x , k y ) = z o Δ z z o + Δ z I o ( k x , k y , z ) exp [ { 1 4 π ( λ NA ) 2 + j λ z 4 π } k x 2 + { 1 4 π ( λ NA lp ) 2 } k y 2 ] d z ,
H HPO ( x , y ) = F 1 { H HPO ( k x , k y ) } = z o Δ z z o + Δ z I o ( x , y , z ) j λ z exp [ ( π NA 2 z 2 + j π λ z ) x 2 π NA lp 2 z 2 y 2 ] d z ,

Metrics