Abstract

We present the generation of optical vector beams using a two-mode fiber (TMF)-based beam converter. The TMF converts the input Gaussian (TEM00) beam into linearly polarized Hermite–Gaussian (HG10, HG01) beams, a radially polarized Laguerre–Gaussian (LG01) beam with single helical charge or coherent linear combinations of the different vector modes guided in the fiber, depending on the input beam polarization, the fiber length, and the launch condition. Polarization and two-beam interference analyses of the output beam characterize the electric field orientations of the output beam and the presence of transverse and longitudinal optical vortex in the generated HG and LG beams.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
    [CrossRef]
  2. L. E. Helseth, Opt. Commun. 191, 161 (2001).
    [CrossRef]
  3. R. D. Romea and W. D. Kimura, Phys. Rev. D 42, 1807 (1990).
    [CrossRef]
  4. Q. Zhan and J. R. Leger, Appl. Opt. 41, 4630 (2002).
    [CrossRef] [PubMed]
  5. B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
    [CrossRef] [PubMed]
  6. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
    [CrossRef]
  7. Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
    [CrossRef]
  8. B. E. A. Saleh and M. C. Teich (Wiley, 2008).
  9. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
    [CrossRef]
  10. A. V. Volyar and T. A. Fadeeva, Opt. Spectrosc. 85, 264 (1998).
  11. G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
    [CrossRef]
  12. A. W. Snyder and J. D. Love (Chapman and Hall, 1983).
  13. V. S. Liberman and B. Ya. Zel'dovich, Phys. Rev. A 46, 5199 (1992).
    [CrossRef] [PubMed]
  14. A. Yu. Savchencko and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 13, 273 (1996).
    [CrossRef]

2009

Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
[CrossRef]

2007

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

2004

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

2003

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

2002

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Q. Zhan and J. R. Leger, Appl. Opt. 41, 4630 (2002).
[CrossRef] [PubMed]

2001

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

2000

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

1998

A. V. Volyar and T. A. Fadeeva, Opt. Spectrosc. 85, 264 (1998).

1996

1992

V. S. Liberman and B. Ya. Zel'dovich, Phys. Rev. A 46, 5199 (1992).
[CrossRef] [PubMed]

1990

R. D. Romea and W. D. Kimura, Phys. Rev. D 42, 1807 (1990).
[CrossRef]

Bernet, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Fadeeva, T. A.

A. V. Volyar and T. A. Fadeeva, Opt. Spectrosc. 85, 264 (1998).

Furhapter, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Hell, S. W.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

Helseth, L. E.

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Kimura, W. D.

R. D. Romea and W. D. Kimura, Phys. Rev. D 42, 1807 (1990).
[CrossRef]

Leger, J. R.

Liberman, V. S.

V. S. Liberman and B. Ya. Zel'dovich, Phys. Rev. A 46, 5199 (1992).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love (Chapman and Hall, 1983).

Maurer, C.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Novotny, L.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Petrov, D.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

Romea, R. D.

R. D. Romea and W. D. Kimura, Phys. Rev. D 42, 1807 (1990).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich (Wiley, 2008).

Savchencko, A. Yu.

Sick, B.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love (Chapman and Hall, 1983).

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich (Wiley, 2008).

Volpe, G.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Volyar, A. V.

A. V. Volyar and T. A. Fadeeva, Opt. Spectrosc. 85, 264 (1998).

Westphal, V.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

Zel'dovich, B. Ya.

Zhan, Q.

Adv. Opt. Photonics

Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. B

Nature

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2003).
[CrossRef]

New J. Phys.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Opt. Commun.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Opt. Spectrosc.

A. V. Volyar and T. A. Fadeeva, Opt. Spectrosc. 85, 264 (1998).

Phys. Rev. A

V. S. Liberman and B. Ya. Zel'dovich, Phys. Rev. A 46, 5199 (1992).
[CrossRef] [PubMed]

Phys. Rev. D

R. D. Romea and W. D. Kimura, Phys. Rev. D 42, 1807 (1990).
[CrossRef]

Phys. Rev. Lett.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Other

B. E. A. Saleh and M. C. Teich (Wiley, 2008).

A. W. Snyder and J. D. Love (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup used for the generation and characterization of OVBs. P, polarizer; HWP, half-wave plate; L 1 , L 2 , lenses; BS 1 , BS 2 , 50-50 beam splitters; M 1 , M 2 , mirrors; TMF, two-mode fiber; A, analyzer; CCD, digital camera; θ, θ , rotation angles.

Fig. 2
Fig. 2

Intensity pattern at the fiber output as a function of HWP rotation. (a)–(j) θ = 0 ° 90 ° in steps of 10°.

Fig. 3
Fig. 3

Average beam intensity as a function of analyzer rotation angle for the different output beams. HG 10 ( θ = 0 ° ) (open triangles), LG 0 1 ( θ = 35 ° ) (filled squares), and tilted HG 01 ( θ = 65 ° ) (open circles). The symbols are fitted to a sinusoidal curve. The beam patterns and the corresponding PVs are given in the insets (a)–(c).

Fig. 4
Fig. 4

Beam intensity pattern, PV orientation, and the corresponding two-beam interference pattern for a 23.5 - cm -long fiber. (a) HG 10 beam for θ = 0 ° ; (b) HG 01 beam for θ = 337.5 ° . The two-beam interference patterns of (a) and (b) show a π phase shift between the two lobes. (c) LG 0 1 beam for θ = 22.5 ° , and the two-beam interference pattern shows the forklet, an indication of a single helical charge on the beam axis

Metrics