Abstract

We propose an imaging principle that employs a radially polarized zeroth-order Bessel beam in the illlumination system of the localized surface plasmon microscope. The illumination system enables the microscope to visualize a refractive index distribution on a substrate fabricated in the Kretschmann configuration by the measurement of reflected intensity. The experimentally observed image of a particle reveals that the spatial resolution reaches the optical diffraction limit. The proposed principle can contribute to increase the imaging speed of localized surface plasmon microscopy by use of a beam scanning device.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription