Abstract

The feasibility and extraordinary properties of mirrorless optical parametric oscillations in a microscopic strongly absorbing slab of negative-index metamaterial are shown. They stem from the backwardness of electromagnetic waves inherent with this type of metamaterial.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, Nat. Photonics 1, 41 (2007).
    [CrossRef]
  2. M. W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 15, 5238 (2007).
    [CrossRef] [PubMed]
  3. M. W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 16, 8055 (2008).
    [CrossRef]
  4. A. K. Popov, S. A. Myslivets, T. F. George, and V. M. Shalaev, Opt. Lett. 32, 3044 (2007).
    [CrossRef] [PubMed]
  5. S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
    [CrossRef]
  6. C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
    [CrossRef]
  7. A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
    [CrossRef]
  8. A. K. Popov and S. A. Myslivets, Appl. Phys. Lett. 93, 191117 (2008).
    [CrossRef]
  9. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
    [CrossRef] [PubMed]
  10. A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
    [CrossRef]

2008 (3)

M. W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 16, 8055 (2008).
[CrossRef]

A. K. Popov and S. A. Myslivets, Appl. Phys. Lett. 93, 191117 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (1)

A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
[CrossRef]

2005 (1)

A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
[CrossRef]

1966 (1)

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Canalias, C.

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[CrossRef]

Feth, N.

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

George, T. F.

Harris, S. E.

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Klein, M. W.

Linden, S.

Myslivets, S. A.

A. K. Popov and S. A. Myslivets, Appl. Phys. Lett. 93, 191117 (2008).
[CrossRef]

A. K. Popov, S. A. Myslivets, T. F. George, and V. M. Shalaev, Opt. Lett. 32, 3044 (2007).
[CrossRef] [PubMed]

A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
[CrossRef]

Pasiskevicius, V.

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[CrossRef]

Popov, A. K.

A. K. Popov and S. A. Myslivets, Appl. Phys. Lett. 93, 191117 (2008).
[CrossRef]

A. K. Popov, S. A. Myslivets, T. F. George, and V. M. Shalaev, Opt. Lett. 32, 3044 (2007).
[CrossRef] [PubMed]

A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
[CrossRef]

A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, Nat. Photonics 1, 41 (2007).
[CrossRef]

A. K. Popov, S. A. Myslivets, T. F. George, and V. M. Shalaev, Opt. Lett. 32, 3044 (2007).
[CrossRef] [PubMed]

A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Wegener, M.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

A. K. Popov and S. A. Myslivets, Appl. Phys. Lett. 93, 191117 (2008).
[CrossRef]

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Nat. Photonics (2)

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[CrossRef]

V. M. Shalaev, Nat. Photonics 1, 41 (2007).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Coupling geometry for a TWM BWMOPO and (b) and (c) tailored distribution of the signal, T 1 ( z ) , and of the idler, η 2 = h 2 ( z ) h 1 ( L ) 2 , along the slab at Δ k = 0 ; [(b) and main plot (c)] α 1 L = 2.5 , α 2 L = 2 . (b) Main plot, g L = 7.865 ; right inset, four-order decrease in T 1 ( z ) outside the geometrical resonance at g L = 10 ; left inset, geometrical resonances in output signal T 10 . (c) g L = 1.554 , left inset, α 2 L = α 1 L = 2.5 ; right inset, α 2 L = α 1 L = 2.5 . (d) (OPO resonances) α 2 L = 3 , α 1 L = 2.3 .

Fig. 2
Fig. 2

(a) Scheme and (b) coupling geometry of resonant FWM BWMOPO, (c)–(e) nonlinear interference spectral structures in ( g α 10 ) 2 and ( s α 10 ) 2 , (f) and (g) transmittance T 10 versus Re ( g L ) and Im ( g L ) , (h) BWMOPO threshold versus ω 1 and α 10 L . G 3 = G 4 = 20 GHz , Ω 3 = Ω 4 = Γ g l , y = Ω 1 Γ l n , y 0 = 100.94 . (f) and (g) α 2 L = 2 , α 1 L = 2.5 , (f) Δ k = 0 , (g) Δ k L = 7 π . (h) δ k L ra = 0.248 , L r L ra = 32.6426 . L ra = α 10 1 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d h 1 d z = i σ 1 h 3 h 2 * exp [ i Δ k z ] + ( α 1 2 ) h 1 ,
d h 2 d z = i σ 2 h 3 h 1 * exp [ i Δ k z ] ( α 2 2 ) h 2 .
T 1 ( z = 0 ) = T 10 = exp { [ ( α 1 2 ) s ] L } cos R L + ( s R ) sin R L 2 .
d E 1 d z = i γ 1 ( 3 ) E 2 * exp [ i Δ k z ] + ( α 1 2 ) E 1 ,
d E 2 d z = i γ 2 ( 3 ) E 1 * exp [ i Δ k z ] ( α 2 2 ) E 2 .

Metrics