Abstract

A method for ultrafast photonic time-intensity integration of an arbitrary temporal waveform is, for the first time to our knowledge, proposed and demonstrated. The introduced intensity-integration concept is based on the superposition of mutually incoherent, continuously-time-delayed replicas of the optical intensity waveform to be processed. This idea is practically implemented using optical intensity modulation of the input waveform with a rectangularlike incoherent energy spectrum distribution followed by linear dispersion. The key design specifications of the proposed integration scheme are derived and discussed. Proof-of-concept experiments are performed demonstrating accurate integration of several duration-limited microwave and optical intensity waveforms with time features from the picosecond to the subnanosecond range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
    [CrossRef]
  2. N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
    [CrossRef]
  3. N. Q. Ngo and L. N. Binh, J. Lightwave Technol. 24, 563 (2006).
    [CrossRef]
  4. N. Q. Ngo, Opt. Lett. 32, 3020 (2007).
    [CrossRef]
  5. J. Azaña, Opt. Lett. 33, 4 (2008).
    [CrossRef]
  6. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. Ahn, S. LaRochelle, and J. Azaña, Opt. Express 16, 18202 (2008).
    [CrossRef] [PubMed]
  7. Y. Park, T. Ahn, Y. Dai, J. Yao, and J. Azaña, Opt. Express 16, 17817 (2008).
    [CrossRef] [PubMed]
  8. Q. Wang, F. Zeng, S. Blais, and J. Yao, Opt. Lett. 31, 3083 (2006).
    [CrossRef] [PubMed]
  9. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 1872 (2007).
    [CrossRef] [PubMed]

2008 (3)

2007 (2)

2006 (3)

1995 (1)

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Ahn, T.

Ayotte, N.

Azaña, J.

Binh, L. N.

Blais, S.

Dai, Y.

Dong, J.

Doucet, S.

Hsue, C.-W.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

Huang, D.

LaRochelle, S.

Liu, D.

Ngo, N. Q.

Park, Y.

Slavík, R.

Tsai, L.-C.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

Tsai, Y.-H.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

Wang, Q.

Xu, J.

Yao, J.

Zeng, F.

Zhang, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the photonics intensity integration process. (b) Proof-of-concept experimental setup.

Fig. 2
Fig. 2

Time-intensity integration of a flat-top waveform: (a) measured input intensity waveform and (b) optically processed integration (solid curve) and numerical integration of (a) (circles). Inset, measured spectrum of the incoherent light source.

Fig. 3
Fig. 3

Time-intensity integration of a double pulse, with the same captions as in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = t = t x ( t ) d t = τ = 0 + x ( t τ ) d τ ,
T Δ ω Φ ̈ < d t 2 .

Metrics