Abstract

We present experimental and theoretical results showing efficient emergence of rogue wavelike extreme intensity spikes during the fiber-based induced-modulational instability process driven by a partially incoherent pump. In particular, we show that the rogue event probability can be easily controlled by adjusting the pump–signal detuning.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
    [CrossRef] [PubMed]
  3. R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
    [CrossRef]
  4. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  5. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
    [CrossRef]
  6. J. M. Dudley, G. Genty, and B. J. Eggleton, Opt. Express 16, 3644 (2008).
    [CrossRef] [PubMed]
  7. A. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).
    [CrossRef]
  8. K. Hammani, C. Finot, J. M. Dudley, and G. Millot, Opt. Express 16, 16467 (2008).
    [CrossRef] [PubMed]
  9. T. Sylvestre, A. Mussot, E. Lantz, and H. Maillote, in IEEE/LEOS Winter Topical Meeting (IEEE, 2008), p. 49.
    [CrossRef]
  10. A. Sauter, S. Pitois, G. Millot, and A. Picozzi, Opt. Lett. 30, 2143 (2005).
    [CrossRef] [PubMed]

2008 (3)

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
[CrossRef]

2005 (1)

1996 (1)

1986 (1)

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

1982 (1)

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Chiang, T.-K.

Dudley, J. M.

Dyachenko, A.

A. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).
[CrossRef]

Eggleton, B. J.

Finot, C.

Genty, G.

Hammani, K.

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
[CrossRef]

Kagi, N.

Kazovsky, L. G.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
[CrossRef]

Lantz, E.

T. Sylvestre, A. Mussot, E. Lantz, and H. Maillote, in IEEE/LEOS Winter Topical Meeting (IEEE, 2008), p. 49.
[CrossRef]

Maillote, H.

T. Sylvestre, A. Mussot, E. Lantz, and H. Maillote, in IEEE/LEOS Winter Topical Meeting (IEEE, 2008), p. 49.
[CrossRef]

Marhic, M. E.

Millot, G.

Mussot, A.

T. Sylvestre, A. Mussot, E. Lantz, and H. Maillote, in IEEE/LEOS Winter Topical Meeting (IEEE, 2008), p. 49.
[CrossRef]

Picozzi, A.

Pitois, S.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
[CrossRef]

Sauter, A.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
[CrossRef]

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Sylvestre, T.

T. Sylvestre, A. Mussot, E. Lantz, and H. Maillote, in IEEE/LEOS Winter Topical Meeting (IEEE, 2008), p. 49.
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Zakharov, V. E.

A. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

JETP Lett. (1)

A. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).
[CrossRef]

Nature (London) (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London) 450, 1054 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

T. Sylvestre, A. Mussot, E. Lantz, and H. Maillote, in IEEE/LEOS Winter Topical Meeting (IEEE, 2008), p. 49.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for induced incoherent MI. (b) Pump optical spectrum. (c) Pump autocorrelation. The experimental measurements are compared with the results calculated numerically assuming a Gaussian stochastic distribution with a coherence time of 9 ps .

Fig. 2
Fig. 2

Evolution of the output spectrum as a function of pump–signal detuning. Experimental results (subplots a) are compared with numerical results (subplots b). The evolution based on a partially incoherent pump (subplots 1) is compared with that observed with a coherent pump (subplots 2). Intensities are normalized with respect to the initial signal power.

Fig. 3
Fig. 3

(a1)–(a3) Amplified signal for various pump–signal detunings Ω: 0.75 THz , 1 THz , and 1.25 THz [supblots a1, a2, and a3, respectively, corresponding to spectra A, B, and C of Fig. 2(a1)]. Intensity is normalized with respect to the median value. (b) Simulation of the amplified signal generated for a pump–signal detuning of 1.25 THz . (c) Experimental autocorrelation of the amplified signal (solid black curve) compared with simulation results (gray curve).

Fig. 4
Fig. 4

(a) Output pulsed signal in the presence of a partially incoherent pump. The dashed line represents the signal power level without the pump. (b) Probability distributions of the output peak power for pump powers of 10 mW , 50 mW , and 100 mW (light gray, dark gray, and black histograms, respectively). Experimental results (b1) are normalized with respect to the median value and are compared with numerical results (b2).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i ψ z = β 2 2 2 ψ T 2 γ ψ 2 ψ .

Metrics