Abstract

Iterative data reconstruction in a thin photonic data storage medium using three-dimensional (3D) absorbers in a highly scattering medium is presented for secure data storage. 3D absorbers are used as data. A highly scattering medium protects data to measure 3D absorbers without knowledge of the scattering coefficient distribution because the phase information is lost during multiple scattering. This prevents an interferometer from measuring the volume medium. To recover the 3D absorbers, a 3D scattering coefficient distribution model is used as prior information and then an iterative method is applied to reduce the difference between the measured and numerical output intensity distributions. A preliminary numerical evaluation is presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Refregier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [Crossref] [PubMed]
  2. O. Matoba and B. Javidi, Appl. Opt. 38, 7288 (1999).
    [Crossref]
  3. O. Matoba and B. Javidi, Opt. Lett. 24, 762 (1999).
    [Crossref]
  4. O. Matoba, S. Matsuki, and K. Nitta, J. Phys. Conf. Ser. 139, 012003 (2008).
    [Crossref]
  5. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, J. Opt. Soc. Am. A 14, 325 (1997).
    [Crossref]
  6. B. W Pogue, M. S. Patterson, and T. J. Farrell, Proc. SPIE 2389, 328 (1995).
    [Crossref]
  7. O. Matoba, T. Sawasaki, and K. Nitta, Appl. Opt. 47, 4400 (2008).
    [Crossref] [PubMed]
  8. C. C. Sun and W. C. Su, Appl. Opt. 40, 1253 (2001).
    [Crossref]
  9. R. Scarmozzino and R. M. Osgood, Jr., J. Opt. Soc. Am. A 8, 724 (1991).
    [Crossref]

2008 (2)

O. Matoba, S. Matsuki, and K. Nitta, J. Phys. Conf. Ser. 139, 012003 (2008).
[Crossref]

O. Matoba, T. Sawasaki, and K. Nitta, Appl. Opt. 47, 4400 (2008).
[Crossref] [PubMed]

2001 (1)

1999 (2)

1997 (1)

1995 (2)

B. W Pogue, M. S. Patterson, and T. J. Farrell, Proc. SPIE 2389, 328 (1995).
[Crossref]

P. Refregier and B. Javidi, Opt. Lett. 20, 767 (1995).
[Crossref] [PubMed]

1991 (1)

Barbour, R. L.

Farrell, T. J.

B. W Pogue, M. S. Patterson, and T. J. Farrell, Proc. SPIE 2389, 328 (1995).
[Crossref]

Javidi, B.

Matoba, O.

Matsuki, S.

O. Matoba, S. Matsuki, and K. Nitta, J. Phys. Conf. Ser. 139, 012003 (2008).
[Crossref]

Nitta, K.

O. Matoba, S. Matsuki, and K. Nitta, J. Phys. Conf. Ser. 139, 012003 (2008).
[Crossref]

O. Matoba, T. Sawasaki, and K. Nitta, Appl. Opt. 47, 4400 (2008).
[Crossref] [PubMed]

Osgood, R. M.

Patterson, M. S.

B. W Pogue, M. S. Patterson, and T. J. Farrell, Proc. SPIE 2389, 328 (1995).
[Crossref]

Pei, Y.

Pogue, B. W

B. W Pogue, M. S. Patterson, and T. J. Farrell, Proc. SPIE 2389, 328 (1995).
[Crossref]

Refregier, P.

Sawasaki, T.

Scarmozzino, R.

Su, W. C.

Sun, C. C.

Wang, Y.

Yao, Y.

Zhu, W.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a thin medium using absorbers in a highly scattering medium as secure data storage.

Fig. 2
Fig. 2

Block diagram of an iterative reconstruction method of absorbers using a forward numerical diffusion equation and an inverse method using a weight function.

Fig. 3
Fig. 3

Numerical reconstruction of one absorber in a homogeneous scattering medium. (a) Original absorption distribution, (b) reconstruction at first reconstruction, (c) reconstruction after the tenth iteration, and (d) their profiles of the output intensity distributions.

Fig. 4
Fig. 4

Three-layered scattering medium with three absorbers. (a) Scattering coefficient distribution and (b) absorption distribution.

Fig. 5
Fig. 5

Numerical reconstruction of three absorbers in three-layered scattering medium. (a), (b) Reconstructed absorption distributions after the tenth iteration when the correct and an incorrect scattering distributions are used, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 I ( r r ) + k 2 ( r r ) I ( r r ) = S ( r r ) ,
k ( r r ) = μ a ( r r ) D ( r r ) + i ω v D ( r r ) ,
D ( r r ) = [ 3 ( μ a ( r r ) + μ s ( r r ) ) ] 1 .
k i 2 ( r r ) = k i 1 2 ( r r ) + O i ( r r ) .
W i O i = I r m I r i ,
W i , s t = I i 1 ( d i ; r t ) I i ( r t ; r s ) δ ν .

Metrics