Abstract

Optically active surfaces that can provide strong localization of electromagnetic fields at predefined points are desired for applications that require high spatial resolution and high sensitivity. Here, we examine the geometric influences on, and polarization dependencies of, electromagnetic near fields on the surface of an array of tailor designed, mesoscalic, silver-coated structures with threefold symmetry characteristics. For spatially resolved mapping of the electromagnetic near fields and examining the influence of polarization, we use a photoelectron emission microscope. We find that the investigated structures not only provide an increase of the near-field intensity at their boundaries, but also that the symmetry centers of the structures focus energy in a polarization dependent manner. Changing the polarization of the incident light enables the localization of near-field intensities without displacing the excitation. Hence we show that breaking of symmetry can provide controllable centers of “hot spots” for the basis of an improved design to gain more efficient surface structures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription