Abstract

We present an optimized method for multiwavelength interferometry that allows measurements beyond the largest beat wavelength. The approach exploits wavelength coincidence between two beat wavelengths in order to measure unambiguously over an extended range. Performance of the approach has been validated both through simulations and experimentally by means of a fiber interferometer for four measurement wavelengths. Initial results have demonstrated 1200th of a fringe phase resolution, giving absolute metrology over 18.16mm, or a dynamic range of 1 part in 2.4×106. With improved phase resolution the method has the potential to range over >100m using femtosecond laser frequency comb sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).
  2. K. Creath, Prog. Opt. 26, 349 (1988).
    [CrossRef]
  3. M. Kujawinska and J. Wojciak, Opt. Lasers Eng. 14, 325 (1991).
    [CrossRef]
  4. M. R. Benoit, J. Phys. 3(7), 57 (1898).
  5. A. Pförtner and J. Schwider, Appl. Opt. 42, 667 (2003).
    [CrossRef] [PubMed]
  6. J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).
  7. C. E. Towers, D. P. Towers, and J. D. C. Jones, Opt. Lett. 28, 887 (2003).
    [CrossRef] [PubMed]
  8. K. Falaggis, D. P. Towers, and C. E. Towers, Proc. SPIE 7062, 706232 (2008).
  9. P. de Groot, Appl. Opt. 33, 5948 (1994).
    [CrossRef] [PubMed]
  10. K. Falaggis, D. P. Towers, and C. E. Towers, J. Opt. A(to be published).
  11. N. R. Newbury and W. C. Swann, J. Opt. Soc. Am. B 24, 1756 (2007).
    [CrossRef]

2008 (1)

K. Falaggis, D. P. Towers, and C. E. Towers, Proc. SPIE 7062, 706232 (2008).

2007 (1)

2003 (2)

2002 (2)

J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).

S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).

1994 (1)

1991 (1)

M. Kujawinska and J. Wojciak, Opt. Lasers Eng. 14, 325 (1991).
[CrossRef]

1988 (1)

K. Creath, Prog. Opt. 26, 349 (1988).
[CrossRef]

1898 (1)

M. R. Benoit, J. Phys. 3(7), 57 (1898).

Benoit, M. R.

M. R. Benoit, J. Phys. 3(7), 57 (1898).

Bothe, T.

J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).

Burke, J.

J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).

Creath, K.

K. Creath, Prog. Opt. 26, 349 (1988).
[CrossRef]

Dandliker, R.

S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).

de Groot, P.

Falaggis, K.

K. Falaggis, D. P. Towers, and C. E. Towers, Proc. SPIE 7062, 706232 (2008).

K. Falaggis, D. P. Towers, and C. E. Towers, J. Opt. A(to be published).

Hess, C.

J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).

Jones, J. D. C.

Kujawinska, M.

M. Kujawinska and J. Wojciak, Opt. Lasers Eng. 14, 325 (1991).
[CrossRef]

Leveque, S.

S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).

Newbury, N. R.

Osten, W.

J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).

Pförtner, A.

Salvade, Y.

S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).

Scherler, O.

S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).

Schwider, J.

Swann, W. C.

Towers, C. E.

K. Falaggis, D. P. Towers, and C. E. Towers, Proc. SPIE 7062, 706232 (2008).

C. E. Towers, D. P. Towers, and J. D. C. Jones, Opt. Lett. 28, 887 (2003).
[CrossRef] [PubMed]

K. Falaggis, D. P. Towers, and C. E. Towers, J. Opt. A(to be published).

Towers, D. P.

K. Falaggis, D. P. Towers, and C. E. Towers, Proc. SPIE 7062, 706232 (2008).

C. E. Towers, D. P. Towers, and J. D. C. Jones, Opt. Lett. 28, 887 (2003).
[CrossRef] [PubMed]

K. Falaggis, D. P. Towers, and C. E. Towers, J. Opt. A(to be published).

Wojciak, J.

M. Kujawinska and J. Wojciak, Opt. Lasers Eng. 14, 325 (1991).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. B (1)

J. Phys. (1)

M. R. Benoit, J. Phys. 3(7), 57 (1898).

Laser Focus World (1)

S. Leveque, Y. Salvade, R. Dandliker, and O. Scherler, Laser Focus World 38(4), 101 (2002).

Opt. Lasers Eng. (1)

M. Kujawinska and J. Wojciak, Opt. Lasers Eng. 14, 325 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

K. Falaggis, D. P. Towers, and C. E. Towers, Proc. SPIE 7062, 706232 (2008).

J. Burke, T. Bothe, W. Osten, and C. Hess, Proc. SPIE 4778, 477826 (2002).

Prog. Opt. (1)

K. Creath, Prog. Opt. 26, 349 (1988).
[CrossRef]

Other (1)

K. Falaggis, D. P. Towers, and C. E. Towers, J. Opt. A(to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Unambiguous measurement range for classical beat and hybrid approaches against wavelength separation.

Fig. 2
Fig. 2

Four-wavelength fiber interferometer. FBG, fiber Bragg grating; FI, Faraday isolator; PC, polarization controller; PZT, piezoelectric transducer; FC, fiber collimator; PD, photodiode; EDFA, erbium-doped fiber amplifier; ASE, amplified spontaneous emission source; PLM, path length matching fiber; AC, angle cleave; C, fiber circulator.

Fig. 3
Fig. 3

Measured OPD using the hybrid phase and wavelength coincidence strategy showing reliable measurement over two of the longest beat wavelengths.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 x = ( m 0 + ϕ 0 2 π ) λ 0 = ( Φ 01 2 π ) Λ 01 .
m 0 = INT [ Φ 01 2 π Λ 01 λ 0 ϕ 0 2 π ] ,
Λ 01 G Λ 02 G = Λ 02 G Λ 03 G = = Λ 0 n 1 G λ 0 G 2 π 6 2 σ φ ,
Λ 01 G D = λ 0 G λ 1 G D ( λ 1 G D λ 0 G ) < Λ 01 G .
N R = INT [ 1 Λ 01 G D Λ 02 G INT [ Λ 01 G D Λ 02 G ] ] .
N R Λ 01 G D Λ 02 G 2 π 6 2 σ φ .
λ 1 G D = 2 π λ 0 G λ 2 G 2 π λ 2 G 12 2 σ φ ( λ 2 G λ 0 G ) .
( λ 1 G D λ 0 G ) λ Res , ( λ 2 G λ 1 G D ) λ Res .

Metrics