Abstract

We study the frequency dependence of the optical nonlinearity of Si photonic nanowires (Si-PNWs) and its influence on the propagation of ultrashort optical pulses in such nanodevices. Specifically, we show that Si-PNWs present a remarkably large characteristic time associated with self-steepening effects and optical shock formation, namely, more than an order of magnitude larger than in the case of photonic crystal fibers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
    [CrossRef]
  2. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
    [CrossRef]
  3. O. Boyraz, T. Indukuri, and B. Jalali, Opt. Express 12, 829 (2004).
    [CrossRef] [PubMed]
  4. X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
    [CrossRef]
  5. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Opt. Express 14, 5524 (2006).
    [CrossRef] [PubMed]
  6. G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).
    [CrossRef]
  7. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, Opt. Express 14, 12380 (2006).
    [CrossRef] [PubMed]
  8. J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Opt. Express 16, 1280 (2008).
    [CrossRef] [PubMed]
  9. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Opt. Express 14, 4357 (2006).
    [CrossRef] [PubMed]
  10. I. W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, Opt. Express 15, 15242 (2007).
    [CrossRef] [PubMed]
  11. R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]
  12. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  14. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
    [CrossRef] [PubMed]
  15. A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  16. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
    [CrossRef]
  17. B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
    [CrossRef]
  18. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]

2008 (1)

2007 (3)

I. W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, Opt. Express 15, 15242 (2007).
[CrossRef] [PubMed]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

2006 (4)

2005 (2)

2004 (2)

G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

O. Boyraz, T. Indukuri, and B. Jalali, Opt. Express 12, 829 (2004).
[CrossRef] [PubMed]

2002 (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

2000 (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

1989 (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

1986 (1)

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Agrawal, G. P.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Ahmad, R. U.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Barclay, P. E.

Bennett, B. R.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Blow, K. J.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Boyd, R. W.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

Boyraz, O.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Camarda, G. S.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Chen, H. H.

Chen, X.

Chou, C. Y.

Coen, S.

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Dadap, J. I.

Dudley, J. M.

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Dulkeith, E.

Espinola, R. L.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Fauchet, P. M.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Green, W. M.

Green, W. M. J.

Hsieh, I. W.

Indukuri, T.

Jalali, B.

Kibler, B.

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Kimerling, L. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Lee, Y. C.

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Lin, Q.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

Lipson, M.

Liu, X.

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Manolatou, C.

McNab, S. J.

Menyuk, C. R.

Osgood, R. M.

Painter, O.

Panoiu, N. C.

Piredda, G.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

Pizzuto, F.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Rao, H.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Schmidt, B. S.

Sekaric, L.

Sharping, J. E.

Soref, R. A.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Srinivasan, K.

Turner, A. C.

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

Vlasov, Y. A.

Wai, P. K. A.

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Xia, F.

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

Zhang, J.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Appl. Phys. Lett. 91, 071113 (2007).
[CrossRef]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
[CrossRef]

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 65 (2002).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Real and imaginary parts of γ versus λ, determined in the case when only the waveguide dispersion is considered (thin curves) and when both the material and the waveguide dispersion are included (thick curves). (b) Real part of τ s when the frequency dependence of χ ̂ ( 3 ) is neglected (dashed curves) and when it is included (solid curve). The inset shows the imaginary part of τ s versus λ.

Fig. 2
Fig. 2

Pulse propagation in a z = 4 mm long Si-PNW. (a) and (b) τ s = τ 0 = 0.8 fs ( τ w m = 0 ) , (c) and (d) τ 0 = 0.8 fs and τ w m = 7.5 + i 0.77 fs , (e) and (f) τ s = τ 0 = 1.17 fs .

Fig. 3
Fig. 3

Pulse spectrograms calculated for (a) τ s = 0 , (b) τ 0 = 0.8 fs , τ w m = 0 , and (c) τ 0 = 0.8 fs , τ w m = 7.5 + i 0.77 fs . In all cases the propagation distance is z = 4 mm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i u z + n 2 i n β n n ! n u t n = i c κ 2 n v g α FC u ω κ n v g δ n FC u 3 ω P Γ 4 ϵ 0 A 0 v g 2 ( 1 + i τ s t ) u 2 u ,
N t = N t c + 3 P 2 Γ 4 ϵ 0 A 0 2 v g 2 u 4 .

Metrics