Abstract

We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360°.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  2. C. J. Chang-Hasnain and S. L. Chuang, J. Lightwave Technol. 24, 4642 (2006).
    [CrossRef]
  3. A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
    [CrossRef]
  4. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005).
    [CrossRef] [PubMed]
  5. H. Su, P. Kondratko, and S. L. Chuang, Opt. Express 14, 4800 (2006).
    [CrossRef] [PubMed]
  6. P. K. Kondratko and S. L. Chuang, Opt. Express 15, 9963 (2007).
    [CrossRef] [PubMed]
  7. F. Öhman, K. Yvind, and J. Mørk, IEEE Photonics Technol. Lett. 19, 1145 (2007).
    [CrossRef]
  8. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, Opt. Lett. 33, 1084 (2008).
    [CrossRef] [PubMed]
  9. M. R. Fisher and S. L. Chuang, IEEE Photonics Technol. Lett. 18, 1714 (2006).
    [CrossRef]
  10. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. Cheng, Y. Wen, Y. Wang, and C. Lu, Opt. Lett. 32, 745 (2007).
    [CrossRef] [PubMed]
  11. M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, Opt. Express 16, 295 (2008).
    [CrossRef] [PubMed]
  12. J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
    [CrossRef]
  13. W. Xue, S. Sales, J. Mørk, and J. Capmany, IEEE Photonics Technol. Lett. 21, 167 (2009).
    [CrossRef]
  14. W. Xue, Y. Chen, F. Öhman, and J. Mørk, Opt. Express 17, 1404 (2009).
    [CrossRef] [PubMed]

2009 (2)

W. Xue, S. Sales, J. Mørk, and J. Capmany, IEEE Photonics Technol. Lett. 21, 167 (2009).
[CrossRef]

W. Xue, Y. Chen, F. Öhman, and J. Mørk, Opt. Express 17, 1404 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (4)

2006 (3)

2005 (3)

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
[CrossRef]

Capmany, J.

W. Xue, S. Sales, J. Mørk, and J. Capmany, IEEE Photonics Technol. Lett. 21, 167 (2009).
[CrossRef]

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, Opt. Express 16, 295 (2008).
[CrossRef] [PubMed]

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and S. L. Chuang, J. Lightwave Technol. 24, 4642 (2006).
[CrossRef]

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

Chen, Y.

Cheng, T.

Chuang, S. L.

Dong, Y.

Fisher, M. R.

M. R. Fisher and S. L. Chuang, IEEE Photonics Technol. Lett. 18, 1714 (2006).
[CrossRef]

He, H.

Hu, W.

Kjær, R.

Kondratko, P.

Kondratko, P. K.

Kuang, W.

Li, Z.

Loayssa, A.

Lu, C.

Mørk, J.

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Öhman, F.

Olcina, R.

Ortega, B.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
[CrossRef]

Sagues, M.

Sales, S.

W. Xue, S. Sales, J. Mørk, and J. Capmany, IEEE Photonics Technol. Lett. 21, 167 (2009).
[CrossRef]

W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, Opt. Lett. 33, 1084 (2008).
[CrossRef] [PubMed]

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, Opt. Express 16, 295 (2008).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
[CrossRef]

Su, H.

Uskov, A.

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

van der Poel, M.

Wang, Q.

Wang, Y.

Wen, Y.

Xue, W.

Yvind, K.

F. Öhman, K. Yvind, and J. Mørk, IEEE Photonics Technol. Lett. 19, 1145 (2007).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

F. Öhman, K. Yvind, and J. Mørk, IEEE Photonics Technol. Lett. 19, 1145 (2007).
[CrossRef]

M. R. Fisher and S. L. Chuang, IEEE Photonics Technol. Lett. 18, 1714 (2006).
[CrossRef]

W. Xue, S. Sales, J. Mørk, and J. Capmany, IEEE Photonics Technol. Lett. 21, 167 (2009).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, IEEE/OSA J. Lightwave Technol. 23, 702 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration to increase the rf phase shift by cascading two SOAs and exploiting spectral filtering. OF, optical/spectral filtering.

Fig. 2
Fig. 2

Experimental setup: PC, polarization controller; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; FBG, fiber Bragg grating.

Fig. 3
Fig. 3

Measured (a) rf phase shift and (b) rf power as a function of the injection currents of SOA3 and SOA1. The solid curves are simulation results.

Fig. 4
Fig. 4

Contour plots of measured rf phase shift (in degrees, shaded contours) and rf power change (in decibels, black-curve contours) as a function of the injection currents of SOA3 and SOA1. The reference points of zero phase and zero power change are set at I 1 = 10 mA and I 3 = 30 mA .

Fig. 5
Fig. 5

Measured rf phase shift (crosses) and power change (circles) when varying the injection currents of SOA1 (bottom axis) and SOA3 (top axis) to follow the 6 dB power contour line in Fig. 4.

Metrics