Abstract

With a systematic comparison of the near- and far-field measures of plasmon resonance, we show that significant differences arise between the measures for both gold and silver spherical particles. The difference of the peak wavelengths between the near- and far-field measures increases with increasing particle size, reaching over 200nm for a particle radius of 100nm for both gold and silver. We physically explain these results by applying radiation damping to the quasi-static approximation, and we provide simple phenomenonological fits, which readily convert between the peak wavelengths for each measure. We expect that taking into account these differences can provide improvement in understanding and optimizing surface-enhanced spectroscopies.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (Wiley, 2004).
    [CrossRef]
  2. G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
    [CrossRef] [PubMed]
  3. S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
    [CrossRef]
  4. C. Radloff and N. J. Halas, Nano Lett. 4, 1323 (2004).
    [CrossRef]
  5. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
    [CrossRef]
  6. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
    [CrossRef]
  7. B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
    [CrossRef] [PubMed]
  8. B. M. Ross and L. P. Lee, Nanotechnology 19, 275201 (2008).
    [CrossRef] [PubMed]
  9. C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
    [CrossRef] [PubMed]
  10. K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
    [CrossRef]
  11. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
    [CrossRef]
  12. F. Hao and P. Nordlander, Chem. Phys. Lett. 446, 115 (2007).
    [CrossRef]
  13. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  15. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
    [CrossRef]

2008 (1)

B. M. Ross and L. P. Lee, Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

2007 (4)

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

F. Hao and P. Nordlander, Chem. Phys. Lett. 446, 115 (2007).
[CrossRef]

2006 (1)

C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[CrossRef]

2004 (1)

C. Radloff and N. J. Halas, Nano Lett. 4, 1323 (2004).
[CrossRef]

2003 (1)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

2002 (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

2001 (1)

C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

1981 (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
[CrossRef]

Chen, Y.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Choi, Y.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Ginger, D.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
[CrossRef] [PubMed]

Halas, N. J.

C. Radloff and N. J. Halas, Nano Lett. 4, 1323 (2004).
[CrossRef]

Hao, F.

F. Hao and P. Nordlander, Chem. Phys. Lett. 446, 115 (2007).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kang, T.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Lee, L. P.

B. M. Ross and L. P. Lee, Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

Li, Z. Y.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[CrossRef]

Long, Y. T.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

McLellan, J.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
[CrossRef]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Mulvaney, P.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[CrossRef]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
[CrossRef] [PubMed]

Nordlander, P.

F. Hao and P. Nordlander, Chem. Phys. Lett. 446, 115 (2007).
[CrossRef]

Pastoriza-Santos, I.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[CrossRef]

Pérez-Juste, J.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

Radloff, C.

C. Radloff and N. J. Halas, Nano Lett. 4, 1323 (2004).
[CrossRef]

Ross, B. M.

B. M. Ross and L. P. Lee, Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
[CrossRef]

Wiley, B. J.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

Xia, Y.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Xiong, Y.

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

F. Hao and P. Nordlander, Chem. Phys. Lett. 446, 115 (2007).
[CrossRef]

Coord. Chem. Rev. (1)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[CrossRef]

J. Phys. Chem. B (1)

C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
[CrossRef]

Nano Lett. (3)

B. J. Wiley, Y. Chen, J. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, Nano Lett. 7, 1032 (2007).
[CrossRef] [PubMed]

C. Radloff and N. J. Halas, Nano Lett. 4, 1323 (2004).
[CrossRef]

C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

B. M. Ross and L. P. Lee, Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

Nat. Methods (1)

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, Nat. Methods 4, 1015 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B 24, 649 (1981).
[CrossRef]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of the normalized values of absorption, extinction, and scattering cross sections and the surface-average and maximum electric field intensity at the surface of a gold sphere ( r = 25 nm ) as a function of wavelength, computed via Mie theory.

Fig. 2
Fig. 2

Electric field amplitude surrounding a gold nanoparticle with an incident plane wave with free-space wavelength (a) 600 nm and (b) 700 nm , computed with Mie theory.

Fig. 3
Fig. 3

Peak wavelength for the primary resonance for the measures in Fig. 1 as a function of particle radius for (a) gold and (b) silver. Symbols represent exact data (Mie theory), while solid and dashed curves represent curves fits presented in Tables 1, 2. The vertical bars represent 10% of the full-width of the plasmon band at 90% maximum.

Tables (2)

Tables Icon

Table 1 Fits [Shown in Fig. 3a] for Peak Wavelength as a Function of Particle Radius a for Gold (a and λ in Nanometers)

Tables Icon

Table 2 Fits [Shown in Fig. 3b] for Peak Wavelength as a Function of Particle Radius a for Silver (a and λ in Nanometers)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α = V 1 3 + ϵ m ϵ ϵ m i 4 π 2 ϵ m 3 2 3 V λ 0 3 ,
C abs = k Im ( α ) , C sca = k 4 6 π α 2 ,
E near = E i ( 1 + 1 2 a 3 π e i a k α ) ,

Metrics