Abstract

A time-gated filter is demonstrated that converts a double-sideband radio-frequency (rf) waveform on a pulsed optically chirped carrier into a single sideband (SSB) waveform. Electrical technology to produce SSB modulation is currently limited to rfs less than 20GHz, while our filter operates up to the maximum frequency available from optical modulators. Application of the filter in photonic time-stretch analog-to-digital converters (TS-ADCs) mitigates severe frequency fading owing to the dispersion penalty that limits the rf input signal bandwidth and time aperture. Here we show that frequency fading owing to the presence of both upper and lower sidebands in the TS-ADC can be reduced by over 20dB and that a TS-ADC using this filter can digitize electrical signals with rfs beyond 100GHz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
    [CrossRef]
  2. Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).
  3. Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
    [CrossRef]
  4. R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, J. Opt. Soc. Am. B 22, 2427 (2005).
    [CrossRef]
  5. R. E. Saperstein, D. Panasenko, and Y. Fainman, Opt. Lett. 29, 501 (2004).
    [CrossRef] [PubMed]
  6. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]

2005 (1)

2004 (1)

2003 (3)

Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
[CrossRef]

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Alic, N.

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Fainman, Y.

Fetterman, H.

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

Han, J.

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

Han, Y.

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
[CrossRef]

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Panasenko, D.

Rokitski, R.

Saperstein, R. E.

Seo, B-J.

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

IEICE Trans. Electron. (1)

Y. Han, B. Jalali, J. Han, B-J. Seo, and H. Fetterman, IEICE Trans. Electron. E86-C, 1276 (2003).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the dispersive Fourier transform filter (DSB, LSB, USB, and SSB , double , lower, upper, and single sideband, respectively). The DSB waveform input at the upper left is converted by the chirp transform, time gate, and inverse chirp operations to the SSB waveform output on the lower left.

Fig. 2
Fig. 2

Experimental setup for the TGF integrated within a time-stretch ADC system ( WDM , wavelength demultiplexer; EDFA , erbium -doped fiber amplifier; rf , radio frequency). The simple photonic arbitrary waveform generator that drives the time-gate MZM is shown by the lower link in which a 1 nm bandwidth optical pulses propagate from the WDM through the 331 ps nm fiber and the variable delay stage to the photodiode where they are converted to current pulses that enter the rf amplifier to obtain the voltage pulses that drive the MZM.

Fig. 3
Fig. 3

Single-shot data for the time stretch ADC with both sidebands present (DSB, time gate off) and single sideband (SSB, time gate on). (a) Time domain signal with time gate off. (b) Time domain signal with time gate on showing attenuation of one pulse corresponding to upper sideband. (c) Recovered rf signal as a function of time with time gate off, showing highly attenuated signal because of the presence of both sidebands and the dispersion penalty. (d) Recovered rf signal with time gate (SSB) on showing increased signal in the absence of the dispersion penalty.

Fig. 4
Fig. 4

Power penalty (dispersion penalty) as a function of input frequency with the time gate off (DSB, both sidebands present) and the time gate on (SSB).

Fig. 5
Fig. 5

Calculated dispersion penalty ripple as a function of sideband suppression ratio. The inset shows the dispersion penalty for sidelobe suppression ratios 2, 5, and 10 dB (large-dashed, small-dashed, and dotted–dashed curves, respectively.

Metrics