Abstract

Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry–Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9MHz repetition rate, 120mW peak power, and 780ps temporal width were obtained. The output results to be stable and has a timing jitter below 40ps. The measured linewidth, 2.8pm, demonstrates that these pulses are transform limited.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [CrossRef]
  2. D. Culverhouse, D. Richardson, T. Birks, and P. Russell, Opt. Lett. 20, 2381 (1995).
    [CrossRef] [PubMed]
  3. M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
    [CrossRef]
  4. N. Myren and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
    [CrossRef]
  5. M. Phillips, A. Ferguson, G. Kino, and D. Patterson, Opt. Lett. 14, 680 (1989).
    [CrossRef] [PubMed]
  6. W. Liu, P. Russell, and L. Dong, Opt. Lett. 22, 1515 (1997).
    [CrossRef]
  7. W. F. Liu, P. S. Russell, and L. Dong, J. Lightwave Technol. 16, 2006 (1998).
    [CrossRef]
  8. C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
    [CrossRef]
  9. P. Bélanger, Opt. Express 13, 8089 (2005).
    [CrossRef] [PubMed]
  10. D. Kuizenga and A. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
    [CrossRef]
  11. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, Opt. Express 16, 21191 (2008).
    [CrossRef] [PubMed]
  12. K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
    [CrossRef]

2008 (2)

F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, Opt. Express 16, 21191 (2008).
[CrossRef] [PubMed]

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

2007 (1)

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

2005 (2)

P. Bélanger, Opt. Express 13, 8089 (2005).
[CrossRef] [PubMed]

N. Myren and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

2000 (1)

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

1998 (2)

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

W. F. Liu, P. S. Russell, and L. Dong, J. Lightwave Technol. 16, 2006 (1998).
[CrossRef]

1997 (1)

1995 (1)

1989 (1)

1970 (1)

D. Kuizenga and A. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Andres, M. V.

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

Bélanger, P.

Birks, T.

Cuadrado-Laborde, C.

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

Culverhouse, D.

Delgado-Pinar, M.

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

Díez, A.

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

Dong, L.

Ferguson, A.

Fujita, J.

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

Haus, H. A.

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Horinaka, H.

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

Jeon, M. Y.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Kaino, T.

Kim, B. Y.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Kim, K. H.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Kino, G.

Koh, Y. W.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Komatsu, K.

Kuizenga, D.

D. Kuizenga and A. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Lee, E. H.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Lee, H. K.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Lee, H. W.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Liu, W.

Liu, W. F.

Margulis, W.

N. Myren and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

Matsuyama, T.

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

Myren, N.

N. Myren and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

Nakazawa, M.

Oh, W. Y.

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Patterson, D.

Phillips, M.

Richardson, D.

Russell, P.

Russell, P. S.

Shirato, T.

Shohda, F.

Siegman, A.

D. Kuizenga and A. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Torres-Peiro, S.

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

Wada, K.

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

Yamada, J.

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Kuizenga and A. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Myren and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (3)

C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiro, A. Díez, and M. V. Andres, Opt. Commun. 274, 407 (2007).
[CrossRef]

M. Y. Jeon, H. K. Lee, K. H. Kim, E. H. Lee, W. Y. Oh, B. Y. Kim, H. W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, Opt. Commun. 281, 368 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mode-locked fiber-laser setup.

Fig. 2
Fig. 2

(a) Reflection spectrum of the AOM-FBG. (b) Optical signal reflected by the short-wavelength sideband when standing acoustic waves are applied (solid curve) and rf voltage (dotted curve). In both cases an rf signal of 4.55 MHz and 16 V is applied to the piezoelectric.

Fig. 3
Fig. 3

(a) Mode-locked train of pulses generated at 9 MHz repetition rate with 160 mW of pump power. (b) A single pulse and its corresponding fitting by a hyperbolic secant squared function (scatter points and solid curve, respectively).

Fig. 4
Fig. 4

(a) Peak power and temporal width (FWHM) of the optical pulses as a function of the pump power (solid and dotted curves, respectively). (b) Electrical spectrum of the optical pulses, showing discrete frequency components spaced by 9 MHz .

Fig. 5
Fig. 5

High resolution optical spectrum of the output pulses shown in Fig. 3. The inset shows the cavity modes spaced by 9 MHz .

Metrics