Abstract

We present a new structure that combines a metal–dielectric–metal sandwich with a periodic structure to form a plasmon polariton photonic crystal. Three-dimensional finite-difference time-domain simulations show a clear bandgap in the terahertz regime. We exploited this property by adding a defect to the crystal, which produces a cavity with a quality factor of 23.3 at a wavelength of 3.45μm. Despite the small Q factor, the ultrasmall sensing volume of 15 zeptoliters produces an extremely large Purcell constant of 4.8×106. Compared to photonic crystals with similar Purcell constant, the bandwidth is several orders of magnitude larger, or about 7THz, ensuring high tolerances to manufacturing parameters, and environmental changes, as well as a high specificity owing to the possibility of broadband spectral fingerprint detection.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
    [CrossRef]
  2. B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
    [CrossRef]
  3. L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008).
    [CrossRef]
  4. M. Tonouchi, Nat. Photonics 1, 97 (2007).
    [CrossRef]
  5. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
    [CrossRef] [PubMed]
  6. S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
    [CrossRef]
  7. M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
    [CrossRef]
  8. Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
    [CrossRef]
  9. G. Veronis and S. Fan, Opt. Express 15, 1211 (2007).
    [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
    [CrossRef]
  11. K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
    [CrossRef] [PubMed]
  12. J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
    [CrossRef]
  13. S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
    [CrossRef]
  14. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
    [CrossRef] [PubMed]
  15. H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 067401 (2006).
    [CrossRef]
  16. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).
  17. T. F. Krauss, Nature Mater. 2, 777 (2003).
    [CrossRef]
  18. Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  19. B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
    [CrossRef]
  20. N. I. Zheludev, Nat. Photonics 2, 351 (2008).
    [CrossRef]

2008 (5)

L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

N. I. Zheludev, Nat. Photonics 2, 351 (2008).
[CrossRef]

2007 (5)

G. Veronis and S. Fan, Opt. Express 15, 1211 (2007).
[CrossRef] [PubMed]

S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
[CrossRef]

J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
[CrossRef]

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

2006 (1)

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 067401 (2006).
[CrossRef]

2005 (3)

B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

2004 (1)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

2003 (2)

T. F. Krauss, Nature Mater. 2, 777 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

2002 (2)

B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
[CrossRef]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Ait-Mansour, K.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Asano, T.

B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Brown, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Buchsbaum, A.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Dragoman, D.

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

Fan, S.

Fasel, R.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Gröning, O.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Gröning, P.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Ho, L.

L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008).
[CrossRef]

Hoshina, H.

S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).

Krauss, T. F.

T. F. Krauss, Nature Mater. 2, 777 (2003).
[CrossRef]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 067401 (2006).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
[CrossRef]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 067401 (2006).
[CrossRef]

Nakajima, S.

S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
[CrossRef]

Noda, S.

B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Otani, C.

S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
[CrossRef]

Pepper, M.

L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008).
[CrossRef]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Ruffieux, P.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Schatz, G. C.

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

Schmid, M.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Taday, P. F.

L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

Varga, P.

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Veronis, G.

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Yamashita, M.

S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, Nat. Photonics 2, 351 (2008).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. Nakajima, H. Hoshina, M. Yamashita, and C. Otani, Appl. Phys. Lett. 90, 041102 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[CrossRef]

Nano Lett. (1)

K. Ait-Mansour, A. Buchsbaum, P. Ruffieux, M. Schmid, P. Gröning, P. Varga, R. Fasel, and O. Gröning, Nano Lett. 8, 2035 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
[CrossRef]

Nat. Photonics (3)

L. Ho, M. Pepper, and P. F. Taday, Nat. Photonics 20, 541 (2008).
[CrossRef]

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

N. I. Zheludev, Nat. Photonics 2, 351 (2008).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Nature Mater. (4)

B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
[CrossRef]

B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
[CrossRef]

T. F. Krauss, Nature Mater. 2, 777 (2003).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (1)

Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 067401 (2006).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, Prog. Quantum Electron. 32, 1 (2008).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Plasmon polariton photonic crystal with 200 nm metal cladding layers sandwiching a 12 nm dielectric layer pierced with an hexagonal lattice of holes, 450 nm in diameter, with a period of 500 nm and a 40 nm diameter central cavity defect hole. (b) E z mode profile ( 87 THz ) of the center of the cavity at z = 0 nm ; the mode is intensely squeezed in and around the defect cavity. (c) E z intensity along the longitudinal direction of the crystal from the center of the cavity to 200 nm above the crystal. (d) E z intensity at 500 nm above the top of the crystal shows that a small amount of light emanates from the crystal through the central column.

Fig. 2
Fig. 2

(a) 3D FDTD band plot simulation of the PPPC, hole diameter of 450 nm , period of 500 nm , shows a clear bandgap between 86.6 and 112 THz . (b) Graph of the decay time and effective index at 87 THz for various starting permittivities as a function of dielectric thickness. As the thickness of the material decreases the effective index increases, however, the decay time is nearly independent of thickness, so we can choose a thin layer high dielectric material to optimize our device with minimal sacrifice to the lifetime of the photons. (c) Effective index of the MDM slab mode as a function of frequency at a thickness of 12 nm . Away from the plasma frequency the dispersion is flat, so the optical properties of the crystal do not significantly change in our area of interest.

Fig. 3
Fig. 3

(a) Cavity ringdown plot for the fundamental mode, 87 THz , of the crystal showing both the source decay and the mode decay. With a decay time of 42.6 fs the quality factor for the cavity is 23.3. (b) FFT of the fundamental cavity mode showing a spectral line width at FWHM of 7.4 THz . (c) Flat field profile versus time shows a gain of 5500 cm 1 in the dielectric layer that can almost compensate for the total loss, material loss, and leakage of the structure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p = 3 4 π 2 Q V λ 3 ,

Metrics