Abstract

We report on the generation of cw squeezed vacuum states of light at the telecommunication wavelength of 1550nm. The squeezed vacuum states were produced by type I optical parametric amplification in a standing-wave cavity built around a periodically poled potassium titanyl phosphate crystal. A nonclassical noise reduction of 5.3dB below the shot noise was observed by means of balanced homodyne detection.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel
Opt. Express 19(25) 25763-25772 (2011)

High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity

Stefan Ast, Moritz Mehmet, and Roman Schnabel
Opt. Express 21(11) 13572-13579 (2013)

Continuous-wave nonclassical light with gigahertz squeezing bandwidth

Stefan Ast, Aiko Samblowski, Moritz Mehmet, Sebastian Steinlechner, Tobias Eberle, and Roman Schnabel
Opt. Lett. 37(12) 2367-2369 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription