Abstract

We propose a flat-top bandpass Solc-type filter in a periodically poled lithium niobate crystal. Our study reveals several critical electric fields at which the transmission spectrum surprisingly evolves into a flat-top one, which is a new method for obtaining a flat-top wavelength filter. Because the flat-top passband width can be controlled by the applied electric field, it shows a potential application in optical networks and ultrafast optical signal processing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Jacob, S. C. Dunn, and M. G. Moharam, Appl. Opt. 41, 1241 (2002).
    [CrossRef] [PubMed]
  2. Y. W. Lee, H.-T. Kim, J. Jung, and B. Lee, Opt. Express 13, 1039 (2005).
    [CrossRef] [PubMed]
  3. Y. W. Lee, H. Kim, and Y. W. Lee, Opt. Express 16, 3871 (2008).
    [CrossRef] [PubMed]
  4. S. A. Alboon and R. G. Lindquist, Opt. Express 16, 231 (2008).
    [CrossRef] [PubMed]
  5. W. Suh and S. Fan, Opt. Lett. 28, 1763 (2003).
    [CrossRef] [PubMed]
  6. Y. Akahane, T. Asano, H. Takano, B. Song, Y. Takana, and S. Noda, Opt. Express 13, 2512 (2005).
    [CrossRef] [PubMed]
  7. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
    [CrossRef] [PubMed]
  8. J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
    [CrossRef]
  9. Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
    [CrossRef]
  10. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
    [CrossRef] [PubMed]
  11. Y. L. Lee, Y. Noh, C. Kee, N. E. Yu, W. Shin, C. Jung, D. Ko, and J. Lee, Opt. Express 16, 13699 (2008).
    [CrossRef] [PubMed]
  12. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
    [CrossRef]
  13. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
    [CrossRef]

2008 (4)

2007 (1)

2005 (2)

2003 (4)

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

W. Suh and S. Fan, Opt. Lett. 28, 1763 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Akahane, Y.

Alboon, S. A.

Asano, T.

Chen, X. F.

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

Chen, Y. L.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

Chen, Y. P.

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

Dunn, S. C.

Eom, T. J.

Eom, T.-J.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

Fan, S.

Jacob, D. K.

Jung, C.

Jung, J.

Kee, C.

Kee, C.-S.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[CrossRef] [PubMed]

Kim, H.

Kim, H.-T.

Ko, D.

Ko, D.-K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[CrossRef] [PubMed]

Lee, B.

Lee, J.

Lee, Y. L.

Lee, Y. W.

Lindquist, R. G.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Moharam, M. G.

Noda, S.

Noh, Y.

Noh, Y.-C.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[CrossRef] [PubMed]

Oh, K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

Shi, J. H.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

Shin, W.

Song, B.

Suh, W.

Takana, Y.

Takano, H.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Xia, Y. X.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

Yu, B.-A.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[CrossRef] [PubMed]

Yu, N. E.

Zhu, Y. M.

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Electron. Lett. (2)

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[CrossRef]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[CrossRef]

Opt. Commun. (1)

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for a PPLN Solc-type wavelength filter. A PPLN crystal, which is Z cut, is placed between two crossed polarizers, the first of which is along the Z direction and the second the Y direction. The light propagates along the X direction, and a uniform electric field is applied along the Y axis of the PPLN sample. ASE, amplified spontaneous emission; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Experimental measurements of the transmission of the fundamental wavelength as a function of the applied electric field ranging from 0 to 5 kV cm . A flat top was discovered at the critical point B.

Fig. 3
Fig. 3

Transmission spectra at electric fields A and B. The curve with the square symbol represents the spectrum with the 3 kV cm electric field ( A ) , and the curve with the star symbol represents the spectrum with the 4.2 kV cm electric field ( B ) .

Fig. 4
Fig. 4

Theoretical results of the transmission of the fundamental wavelength as a function of the applied electric field ranging from 8 to 8 kV cm .

Fig. 5
Fig. 5

Theoretical transmission spectra at point A 0 and critical points B 0 , P 2 and P 1 , P 3 . The dashed-dotted curve represents the theoretical spectrum at A 0 , the solid curve represents the theoretical spectrum at B 0 and P 2 , and the dashed curve represents the theoretical spectrum at P 1 and P 3 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M + = R ( θ ) W 0 R ( θ ) ( positive ) ,
M = R ( θ ) W 0 R ( θ ) ( negative ) .
R ( θ ) = ( cos θ sin θ sin θ cos θ )
W 0 = [ e i Γ 2 0 0 e i Γ 2 ]
M = i N M i = ( M 11 M 21 M 12 M 22 ) .

Metrics