Abstract

We propose a flat-top bandpass Solc-type filter in a periodically poled lithium niobate crystal. Our study reveals several critical electric fields at which the transmission spectrum surprisingly evolves into a flat-top one, which is a new method for obtaining a flat-top wavelength filter. Because the flat-top passband width can be controlled by the applied electric field, it shows a potential application in optical networks and ultrafast optical signal processing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Jacob, S. C. Dunn, and M. G. Moharam, Appl. Opt. 41, 1241 (2002).
    [Crossref] [PubMed]
  2. Y. W. Lee, H.-T. Kim, J. Jung, and B. Lee, Opt. Express 13, 1039 (2005).
    [Crossref] [PubMed]
  3. Y. W. Lee, H. Kim, and Y. W. Lee, Opt. Express 16, 3871 (2008).
    [Crossref] [PubMed]
  4. S. A. Alboon and R. G. Lindquist, Opt. Express 16, 231 (2008).
    [Crossref] [PubMed]
  5. W. Suh and S. Fan, Opt. Lett. 28, 1763 (2003).
    [Crossref] [PubMed]
  6. Y. Akahane, T. Asano, H. Takano, B. Song, Y. Takana, and S. Noda, Opt. Express 13, 2512 (2005).
    [Crossref] [PubMed]
  7. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
    [Crossref] [PubMed]
  8. J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
    [Crossref]
  9. Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
    [Crossref]
  10. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
    [Crossref] [PubMed]
  11. Y. L. Lee, Y. Noh, C. Kee, N. E. Yu, W. Shin, C. Jung, D. Ko, and J. Lee, Opt. Express 16, 13699 (2008).
    [Crossref] [PubMed]
  12. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
    [Crossref]
  13. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
    [Crossref]

2008 (4)

2007 (1)

2005 (2)

2003 (4)

W. Suh and S. Fan, Opt. Lett. 28, 1763 (2003).
[Crossref] [PubMed]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

2002 (1)

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Akahane, Y.

Alboon, S. A.

Asano, T.

Chen, X. F.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

Chen, Y. L.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

Chen, Y. P.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

Dunn, S. C.

Eom, T. J.

Eom, T.-J.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

Fan, S.

Jacob, D. K.

Jung, C.

Jung, J.

Kee, C.

Kee, C.-S.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[Crossref] [PubMed]

Kim, H.

Kim, H.-T.

Ko, D.

Ko, D.-K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[Crossref] [PubMed]

Lee, B.

Lee, J.

Lee, Y. L.

Lee, Y. W.

Lindquist, R. G.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Moharam, M. G.

Noda, S.

Noh, Y.

Noh, Y.-C.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[Crossref] [PubMed]

Oh, K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

Shi, J. H.

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

Shin, W.

Song, B.

Suh, W.

Takana, Y.

Takano, H.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Xia, Y. X.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

Yu, B.-A.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, Opt. Lett. 32, 2813 (2007).
[Crossref] [PubMed]

Yu, N. E.

Zhu, Y. M.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[Crossref]

Electron. Lett. (2)

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, Electron. Lett. 44, 30 (2008).
[Crossref]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Electron. Lett. 39, 224 (2003).
[Crossref]

Opt. Commun. (1)

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, Opt. Commun. 228, 139 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for a PPLN Solc-type wavelength filter. A PPLN crystal, which is Z cut, is placed between two crossed polarizers, the first of which is along the Z direction and the second the Y direction. The light propagates along the X direction, and a uniform electric field is applied along the Y axis of the PPLN sample. ASE, amplified spontaneous emission; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Experimental measurements of the transmission of the fundamental wavelength as a function of the applied electric field ranging from 0 to 5 kV cm . A flat top was discovered at the critical point B.

Fig. 3
Fig. 3

Transmission spectra at electric fields A and B. The curve with the square symbol represents the spectrum with the 3 kV cm electric field ( A ) , and the curve with the star symbol represents the spectrum with the 4.2 kV cm electric field ( B ) .

Fig. 4
Fig. 4

Theoretical results of the transmission of the fundamental wavelength as a function of the applied electric field ranging from 8 to 8 kV cm .

Fig. 5
Fig. 5

Theoretical transmission spectra at point A 0 and critical points B 0 , P 2 and P 1 , P 3 . The dashed-dotted curve represents the theoretical spectrum at A 0 , the solid curve represents the theoretical spectrum at B 0 and P 2 , and the dashed curve represents the theoretical spectrum at P 1 and P 3 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M + = R ( θ ) W 0 R ( θ ) ( positive ) ,
M = R ( θ ) W 0 R ( θ ) ( negative ) .
R ( θ ) = ( cos θ sin θ sin θ cos θ )
W 0 = [ e i Γ 2 0 0 e i Γ 2 ]
M = i N M i = ( M 11 M 21 M 12 M 22 ) .

Metrics