Abstract

The filtering scheme proposed here is based on transmission through a dual long-period-fiber-grating (LPFG) configuration and enables implementation of arbitrary spectral transfer functions using available inverse-scattering design algorithms, such as those widely used for fiber Bragg gratings (FBGs) operating in reflection. Besides the important technical advantage of operation in transmission, the proposed device can reach large spectral bandwidths that would be extremely challenging to reach by, e.g., FBG devices. The proposed concept is demonstrated by designing and fabricating a LPFG-based filter for synthesis of transform-limited 1.5-ps-long square-like pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ch. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
    [CrossRef]
  2. L. Poladian, Opt. Lett. 25, 787 (2000).
    [CrossRef]
  3. M. Kulishov and J. Azaña, J. Opt. Soc. Am. A 22, 1319 (2005).
    [CrossRef]
  4. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
    [CrossRef]
  5. R. Feced and N. Zervas, J. Opt. Soc. Am. A 17, 1573 (2000).
    [CrossRef]
  6. R. Slavík, Y. Park, J. Azaña, and M. Kulishov, in Conference on Lasers and Electro-Optics (CLEO/QELS'08) (Optical Society of America, 2008), paper CMY1.
  7. R. Slavík, Y. Park, and J. Azaña, IEEE Photonics Technol. Lett. 20806 (2008).
    [CrossRef]
  8. D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photonics Technol. Lett. 10, 1590 (1998).
    [CrossRef]
  9. Y. Park, L. Fangxin, and J. Azaña, IEEE Photonics Technol. Lett. 18, 1798 (2006).
    [CrossRef]

2008 (1)

R. Slavík, Y. Park, and J. Azaña, IEEE Photonics Technol. Lett. 20806 (2008).
[CrossRef]

2006 (1)

Y. Park, L. Fangxin, and J. Azaña, IEEE Photonics Technol. Lett. 18, 1798 (2006).
[CrossRef]

2005 (1)

2001 (1)

2000 (2)

1998 (1)

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photonics Technol. Lett. 10, 1590 (1998).
[CrossRef]

Azaña, J.

R. Slavík, Y. Park, and J. Azaña, IEEE Photonics Technol. Lett. 20806 (2008).
[CrossRef]

Y. Park, L. Fangxin, and J. Azaña, IEEE Photonics Technol. Lett. 18, 1798 (2006).
[CrossRef]

M. Kulishov and J. Azaña, J. Opt. Soc. Am. A 22, 1319 (2005).
[CrossRef]

R. Slavík, Y. Park, J. Azaña, and M. Kulishov, in Conference on Lasers and Electro-Optics (CLEO/QELS'08) (Optical Society of America, 2008), paper CMY1.

Ellis, A. D.

Fangxin, L.

Y. Park, L. Fangxin, and J. Azaña, IEEE Photonics Technol. Lett. 18, 1798 (2006).
[CrossRef]

Feced, R.

Feinberg, J.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photonics Technol. Lett. 10, 1590 (1998).
[CrossRef]

Grubsky, V.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photonics Technol. Lett. 10, 1590 (1998).
[CrossRef]

Ibsen, M.

Kulishov, M.

M. Kulishov and J. Azaña, J. Opt. Soc. Am. A 22, 1319 (2005).
[CrossRef]

R. Slavík, Y. Park, J. Azaña, and M. Kulishov, in Conference on Lasers and Electro-Optics (CLEO/QELS'08) (Optical Society of America, 2008), paper CMY1.

Madsen, Ch. K.

Ch. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
[CrossRef]

Park, Y.

R. Slavík, Y. Park, and J. Azaña, IEEE Photonics Technol. Lett. 20806 (2008).
[CrossRef]

Y. Park, L. Fangxin, and J. Azaña, IEEE Photonics Technol. Lett. 18, 1798 (2006).
[CrossRef]

R. Slavík, Y. Park, J. Azaña, and M. Kulishov, in Conference on Lasers and Electro-Optics (CLEO/QELS'08) (Optical Society of America, 2008), paper CMY1.

Petropoulos, P.

Poladian, L.

Richardson, D. J.

Slavík, R.

R. Slavík, Y. Park, and J. Azaña, IEEE Photonics Technol. Lett. 20806 (2008).
[CrossRef]

R. Slavík, Y. Park, J. Azaña, and M. Kulishov, in Conference on Lasers and Electro-Optics (CLEO/QELS'08) (Optical Society of America, 2008), paper CMY1.

Starodubov, D. S.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photonics Technol. Lett. 10, 1590 (1998).
[CrossRef]

Zervas, N.

Zhao, J. H.

Ch. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

R. Slavík, Y. Park, and J. Azaña, IEEE Photonics Technol. Lett. 20806 (2008).
[CrossRef]

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photonics Technol. Lett. 10, 1590 (1998).
[CrossRef]

Y. Park, L. Fangxin, and J. Azaña, IEEE Photonics Technol. Lett. 18, 1798 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Other (2)

Ch. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
[CrossRef]

R. Slavík, Y. Park, J. Azaña, and M. Kulishov, in Conference on Lasers and Electro-Optics (CLEO/QELS'08) (Optical Society of America, 2008), paper CMY1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed filtering device.

Fig. 2
Fig. 2

(a) Cladding-to-core power spectral-transfer functions of two long uniform LPFGs designed for square-like-pulse (solid, red) and double-pulse (dashed, blue) synthesis; (b) spectral power densities of the 450 fs FWHM sech 2 input pulse (dotted, black), and the output square-like pulse (solid, red) and the double-pulse (dashed, blue); (c) input (dotted, black) and output (solid, red: square-like; dashed, blue: double-pulse) temporal waveforms.

Fig. 3
Fig. 3

Transmission spectral transfer functions of (a) the two individual LPFGs (short, solid curve; long, dashed curve) and (b) the entire fiber filtering device along both axes of birefringence (solid and dotted curves) together with the calculated curve (dashed curve). The phase measured along one of the principal axes of birefringence is shown with a dotted curve.

Fig. 4
Fig. 4

Expected (dashed, blue) and measured (solid, black) characteristics of the generated square-like pulse in the (a) spectral and (b) temporal domains. The measured phase profile in the temporal domain is shown with a dotted curve. The inset shows the measured (solid, black) and simulated (dashed, blue) input-pulse-energy spectrum.

Metrics