Abstract

The excitation of whispering-gallery-mode resonances of cylindrical microcavities, using narrow fiber tapers, produces simultaneously the excitation of spiral modes. The power coupled to the spiral modes leads to a significant broadening of the dips observed in the spectrum of light transmitted through the taper. We demonstrate that whispering-gallery modes resonances of cylindrical microcavities can also be interrogated by measuring the reflection spectrum. Unlike the dips observed in transmission, the peaks in the reflection spectrum are symmetric and narrower than the corresponding transmission dips.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
    [CrossRef]
  2. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
    [CrossRef]
  3. M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
    [CrossRef]
  4. V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
    [CrossRef]
  5. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  6. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
    [CrossRef] [PubMed]
  7. I. M. White, H. Oveys, and X. Fan, Opt. Lett. 31, 1319 (2006).
    [CrossRef] [PubMed]
  8. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
    [CrossRef]
  9. M. L. Gorodetsky and V. S. Ilchenko, Laser Phys. 2, 1004 (1992).
  10. D. S. Weiss, V. Sandoghbar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, Opt. Lett. 20, 1835 (1995).
    [CrossRef] [PubMed]
  11. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
    [CrossRef]
  12. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Oxford U. Press/IEEE Press, 1996).
  13. A. W. Poon, R. K. Chang, and J. A. Lock, Opt. Lett. 23, 1105 (1998).
    [CrossRef]

2007 (1)

2006 (3)

I. M. White, H. Oveys, and X. Fan, Opt. Lett. 31, 1319 (2006).
[CrossRef] [PubMed]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

2002 (1)

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

1994 (1)

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

1992 (1)

M. L. Gorodetsky and V. S. Ilchenko, Laser Phys. 2, 1004 (1992).

Andrés, M. V.

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
[CrossRef] [PubMed]

Chang, R. K.

Cheung, G.

Clemmow, P. C.

P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Oxford U. Press/IEEE Press, 1996).

Díez, A.

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Fan, X.

Gimeno, B.

Gorodetsky, M. L.

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, Laser Phys. 2, 1004 (1992).

Hare, J.

Haroche, S.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, Laser Phys. 2, 1004 (1992).

Jacques, F.

Kippenberg, T. J.

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
[CrossRef] [PubMed]

Lefevre-Seguin, V.

Lock, J. A.

Maleki, L.

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

Oveys, H.

Poon, A. W.

Raimond, J.-M.

Sandoghbar, V.

Spillane, S. M.

Vahala, K. J.

Weiss, D. S.

White, I. M.

Yao, X. S.

Zamora, V.

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Laser Phys. (1)

M. L. Gorodetsky and V. S. Ilchenko, Laser Phys. 2, 1004 (1992).

Opt. Commun. (1)

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (1)

P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Oxford U. Press/IEEE Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental arrangement. TLS, tunable laser diode; PC, polarization controller; C, circulator; R, reflected spectrum port; T, transmitted spectrum port; MR, microresonator.

Fig. 2
Fig. 2

Reflection and transmission spectra measured with 5 pm resolution.

Fig. 3
Fig. 3

(a) Reflection and transmission spectrum around a resonance measured with continuous wavelength swept. (b) Calculated reflection and transmission spectrum. For this calculation the values of the different parameters are α = 0.9995 , f = 0.999 , ω 0 = 1.0 μ m , and r = 0.001 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E B ( 0 ) = j β E F , E B T = n = 1 α n 1 f n E B ( n l ) ,
E B R = r n = 1 n α n 1 f n E B ( n l ) .
E T = α E F + j β P ( E B T ) ,
E R = j β P ( E B R ) ,

Metrics