Abstract

We show that the Stokes theorem is valid for a larger class of partially polarized beams than that given in Opt. Lett. 33, 642 (2008) .

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Opt. Lett. 33, 642 (2008).
    [CrossRef] [PubMed]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  3. D. F. V. James, J. Opt. Soc. Am. A 11, 1641 (1994).
    [CrossRef]
  4. M. Salem and E. Wolf, Opt. Lett. 33, 1180 (2008).
    [CrossRef] [PubMed]
  5. J. Tervo, J. Opt. Soc. Am. A 20, 1974 (2003).
    [CrossRef]
  6. F. Gori, Opt. Lett. 24, 584 (1999).
    [CrossRef]
  7. G. Piquero, R. Borghi, and M. Santarsiero, J. Opt. Soc. Am. A 18, 1399 (2001).
    [CrossRef]

2008 (2)

2003 (1)

2001 (1)

1999 (1)

1994 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W ( ρ 1 , ρ 2 , z ) = W ( p ) ( ρ 1 , ρ 2 , z ) + W ( u ) ( ρ 1 , ρ 2 , z ) ,
W ( p ) ( ρ , ρ , z ) = [ B ( ρ , z ) D ( ρ , z ) D * ( ρ , z ) C ( ρ , z ) ] ,
W ( u ) ( ρ , ρ , z ) = A ( ρ , z ) [ 1 0 0 1 ] ,
W ( p ) ( ρ 1 , ρ 2 , z ) = [ E x * ( ρ 1 , z ) E x ( ρ 2 , z ) E x * ( ρ 1 , z ) E y ( ρ 2 , z ) E y * ( ρ 1 , z ) E x ( ρ 2 , z ) E y * ( ρ 1 , z ) E y ( ρ 2 , z ) ]
W ( u ) ( ρ 1 , ρ 2 , z ) = A ( ρ 1 , ρ 2 , z ) [ 1 0 0 1 ] ,
W ( p ) ( ρ 1 , ρ 2 , z ) = G ( ρ 1 , ρ 2 , z ) [ B D D * C ] ,
P ( ρ , z ) = ( B + C ) G ( ρ , z ) ( B + C ) G ( ρ , z ) + 2 A ( ρ , z ) .

Metrics