Abstract

A solid-core photonic-crystal fiber (PCF) with an effective mode area of 20μm2 is used to demonstrate the generation of sub-100-kW, 3070fs wavelength-tunable solitons within a wavelength range of 13001800nm at a repetition rate of 18MHz. An energy of 2.9nJ per pulse is achieved for a 35fs soliton PCF output centered at 1770nm. Our numerical analysis supports experimental findings and suggests that frequency-shifted solitons in solid-core PCFs can be scaled up to a submegawatt level of peak powers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  3. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
    [CrossRef]
  4. A. M. Zheltikov, J. Raman Spectrosc. 38, 1052 (2007).
    [CrossRef]
  5. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, J. Opt. Soc. Am. B 22, 1934 (2005).
    [CrossRef]
  6. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, Opt. Lett. 26, 1233 (2001).
    [CrossRef]
  7. C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz, Opt. Express 13, 6550 (2005).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  9. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
    [CrossRef]
  10. W. Reeves, J. Knight, P. Russell, and P. Roberts, Opt. Express 10, 609 (2002).
    [PubMed]
  11. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  12. A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. S. J. Russell, Opt. Express 15, 1653 (2007).
    [CrossRef] [PubMed]
  13. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, Opt. Lett. 32, 340 (2007).
    [CrossRef] [PubMed]
  14. T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
    [CrossRef]

2008 (1)

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (2)

2002 (1)

2001 (2)

2000 (1)

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

1997 (1)

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Andresen, E. R.

Baltuška, A.

Belardi, W.

Birkedal, V.

Birks, T. A.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Chan, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Chandalia, J. K.

Chia, S.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Eggleton, B. J.

Fuji, T.

Furusawa, K.

Ghalmi, S.

Ho, C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Holzwarth, R.

Ishii, N.

Ivanov, A. A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Joly, N. Y.

Keiding, S. R.

Knight, J.

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Knox, W. H.

Köhler, S.

Kosinski, S. G.

Krausz, F.

Lee, J. H.

Liu, H.-L.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Liu, J.-Y.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Liu, T.-M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Liu, X.

Metzger, T.

Monro, T. M.

Paulsen, H. N.

Petropoulos, P.

Podlipensky, A.

Poulton, C. G.

Ramachandran, S.

Ranka, J. K.

Reeves, W.

Richardson, D. J.

Roberts, P.

Russel, P. St. J.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

Stentz, A. J.

Sun, C.-K.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

Szarniak, P.

Teisset, C.

Thøgersen, J.

Tsai, T.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

van Howe, J.

Windeler, R. S.

Wise, F.

Xu, C.

Yan, M. F.

Zheltikov, A.

Zheltikov, A. M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

A. M. Zheltikov, J. Raman Spectrosc. 38, 1052 (2007).
[CrossRef]

Zhou, S.

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, IEEE Photonics Technol. Lett. 20, 900 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

A. M. Zheltikov, J. Raman Spectrosc. 38, 1052 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectra of the high-energy soliton PCF output measured for input pulses with a pulse width of 55 fs and an energy of 5 nJ (open circles) and 7 nJ (filled circles). The input spectrum of Cr:forsterite laser radiation is shown by the dashed curve. The dashed-dotted line shows the group-velocity dispersion of the PCF as a function of the wavelength. A cross-section image of the PCF is shown in the inset.

Fig. 2
Fig. 2

Experimental (filled circles) and theoretical (solid curve) spectra of Cr:forsterite laser pulses transmitted through a 35 cm piece of PCF with the cross-section structure shown in the inset to Fig. 1. The input pulse is linearly chirped to a pulse width of 85 fs with a chirp parameter α = 0.05 ps 2 . Its spectrum (shown by the dashed curve) supports a transform-limited pulse with a pulse width of 55 fs . The input pulse energy is 3.8 nJ . The fiber effective mode area is 20 μ m 2 . The dispersion profile is as shown in Fig. 1. The fiber Raman function is as defined in [8]. The inset shows the measured cross-correlation frequency-resolved optical gating (XFROG) trace of the 1670 - nm soliton, i.e., the frequency-resolved sum-frequency signal generated by the soliton PCF output E s and a 50 fs Cr:forsterite laser reference pulse E r , measured as a function of the delay time between the E s and E r pulses.

Fig. 3
Fig. 3

Spectra of Cr:forsterite laser pulses transmitted through a PCF with an effective mode area of 20 μ m 2 and a dispersion profile as specified by the dashed-dotted line in Fig. 1. The input pulse energy is (a) 20 and (b) 50 nJ . The fiber length is (a) 2.0 and (b) 0.9 cm . The input pulse width is (a) 55 and (b) 30 fs . The time-domain structure of the PCF output field is shown in the insets. The dashed curves and shaded areas show the spectra of individual solitons calculated by taking the Fourier transform of the two soliton features seen in the time domain (the insets) within a time gate equal to 3 τ s .

Metrics