Abstract

We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (40fs) and spectral widths (20nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  3. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1994).
  5. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  6. X. Liu, C. Xu, W. H. Know, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
    [CrossRef]
  7. N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002).
    [CrossRef]
  8. N. Nishizawa and T. Goto, IEEE Photonics Technol. Lett. 11, 325 (1999).
    [CrossRef]
  9. N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
    [CrossRef]
  10. A. A. Rieznik, “MATLAB scripts for complete Raman response simulations,” http://photonics.incubadora.fapesp.br/portal/download/ssfm-with-raman.
  11. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, Opt. Lett. 24, 113 (1999).
    [CrossRef]
  12. K. König, J. Microsc. 200, 83 (2006).
    [CrossRef]

2006

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

K. König, J. Microsc. 200, 83 (2006).
[CrossRef]

2003

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

2002

N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002).
[CrossRef]

2001

1999

1986

1980

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1973

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1994).

Baltuška, A.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Becker, T. W.

Chandalia, J. K.

Eggleton, B. J.

Fischer, P.

Fuji, T.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Gordon, P.

Goto, T.

N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002).
[CrossRef]

N. Nishizawa and T. Goto, IEEE Photonics Technol. Lett. 11, 325 (1999).
[CrossRef]

Halbhuber, K. J.

Hasegawa, A.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Ishii, N.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Ito, Y.

N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002).
[CrossRef]

Know, W. H.

Köhler, S.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

König, K.

Kosinski, S. G.

Krausz, F.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Liu, X.

Metzger, T.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Nishizawa, N.

N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002).
[CrossRef]

N. Nishizawa and T. Goto, IEEE Photonics Technol. Lett. 11, 325 (1999).
[CrossRef]

Riemann, I.

Rieznik, A. A.

A. A. Rieznik, “MATLAB scripts for complete Raman response simulations,” http://photonics.incubadora.fapesp.br/portal/download/ssfm-with-raman.

Russell, P. St. J.

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Serebryannikov, E. E.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Tappert, F.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Teisset, C. Y.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Windeler, R. S.

Xu, C.

Zheltikov, A. M.

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

IEEE Photonics Technol. Lett.

N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002).
[CrossRef]

N. Nishizawa and T. Goto, IEEE Photonics Technol. Lett. 11, 325 (1999).
[CrossRef]

J. Microsc.

K. König, J. Microsc. 200, 83 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. E

N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Phys. Rev. Lett.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Science

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1994).

A. A. Rieznik, “MATLAB scripts for complete Raman response simulations,” http://photonics.incubadora.fapesp.br/portal/download/ssfm-with-raman.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: 1, Ti:sapphire laser; 2, prism compressor; 3, AOM; 4, AOM controller; 5, 6, 11, 14, and 15, mirror; 7, half-wave plate; 8, coupling lens; 9, PCF fiber; 10, lens; 12, spatial filter; 13, power meter; 16, interferometric autocorrelator; 17, spectrum analyzer.

Fig. 2
Fig. 2

Spectrum evolution as a function of the input average power.

Fig. 3
Fig. 3

Filtered output soliton spectral and autocorrelation measurements for 4, 6, and 10 mW of average power.

Fig. 4
Fig. 4

Measurement (squares) and simulation (circles) of the pulse duration as a function of the central wavelength of the filtered output soliton. Inset, spectral width as a function of the central wavelength of the soliton.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A k = 2 i k + 1 k β k k A T k = i γ ( 1 + i 1 ω 0 T ) ( A ( z , T ) R ( s ) A ( z , t s ) 2 d s ) ,

Metrics