Abstract

We propose an all-optical intensity differentiation scheme based on cross-polarization modulation (XPolM) in a semiconductor optical amplifier (SOA) while demonstrating the absolute value of differential signal that can be obtained by the SOA-based XPolM of two parts with relative delay from the input signal and well extracted by the polarization filter. The differentiation errors and eye diagrams versus sampling time Δ are investigated for data rate at 12.5Gbitss, and the minimal error 0.06 is achieved at Δ=0. Owing to a much faster polarization response, our scheme bears great potential for all-optical signal processing over 100Gbitss. By application of the differentiator, we further obtain the 20GHz short pulse train with a pulse width of 10ps.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Park, J. Azaña, and R. Slavík, Opt. Lett. 32, 710 (2007).
    [CrossRef] [PubMed]
  2. M. Kulishov and J. Azaña, Opt. Lett. 30, 2700 (2005).
    [CrossRef] [PubMed]
  3. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 3029 (2007).
    [CrossRef] [PubMed]
  4. Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
    [CrossRef]
  5. C. Hultgren and E. Ippen, Appl. Phys. Lett. 59, 635 (1991).
    [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  7. N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  8. Z. Li and C. Wu, Opt. Lett. 33, 2032 (2008).
    [CrossRef] [PubMed]
  9. K. Sala, G. K. Wallace, and G. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
    [CrossRef]

2008 (1)

2007 (2)

2005 (1)

2004 (1)

N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

2003 (1)

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

1991 (1)

C. Hultgren and E. Ippen, Appl. Phys. Lett. 59, 635 (1991).
[CrossRef]

1980 (1)

K. Sala, G. K. Wallace, and G. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Azaña, J.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Calabretta, N.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Dong, J.

Dorren, H.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Hall, G.

K. Sala, G. K. Wallace, and G. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Hill, M.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Huang, D.

Hultgren, C.

C. Hultgren and E. Ippen, Appl. Phys. Lett. 59, 635 (1991).
[CrossRef]

Ippen, E.

C. Hultgren and E. Ippen, Appl. Phys. Lett. 59, 635 (1991).
[CrossRef]

Kam, C.

N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Khoe, G.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Kulishov, M.

Li, Z.

Liu, D.

Liu, Y.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Ngo, N.

N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Park, Y.

Sala, K.

K. Sala, G. K. Wallace, and G. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Slavík, R.

Tangdiongga, E.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Tjin, S.

N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Waardt, H.

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Wallace, G. K.

K. Sala, G. K. Wallace, and G. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Wu, C.

Xu, J.

Yu, S.

N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Zhang, X.

Appl. Phys. Lett. (1)

C. Hultgren and E. Ippen, Appl. Phys. Lett. 59, 635 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Sala, G. K. Wallace, and G. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Liu, M. Hill, E. Tangdiongga, H. Waardt, N. Calabretta, G. Khoe, and H. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Opt. Commun. (1)

N. Ngo, S. Yu, S. Tjin, and C. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Opt. Lett. (4)

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principal diagram of all-optical intensity differentiation scheme; Δ, sampling time.

Fig. 2
Fig. 2

Simulation result of output I for a 10 Gbits s real input signal; SOA-OD, SOA-based optical differentiator.

Fig. 3
Fig. 3

(a) Experimental setup of all-optical differentiation, (b) measured (middle) and calculated (bottom) differentiation results at Δ 5 ps for a 12.5 Gbits s super-Gaussian input signal with fixed data 1010 0111 0110 (top).

Fig. 4
Fig. 4

Errors and eye diagrams of differentiation results versus sampling time Δ.

Fig. 5
Fig. 5

(a) 10 GHz input clock signal (top) and 20 GHz output short pulse train (bottom); (b) rf spectrum of the output signal.

Fig. 6
Fig. 6

Autocorrelation trace of the short pulse source.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S out = S TE + S TM ,
tan 2 φ = 2 cos δ S TE S TM ( S TE S TM ) .
S P = S 2 + S 1 cos 2 ( φ 1 φ 2 ) , S S = S 1 sin 2 ( φ 1 φ 2 ) ,
Δ t m = λ 0 2 ( c Δ λ ) ,
Δ t 0 = n 0 l 0 c .
Δ t = Δ + Δ t 0 .

Metrics