Abstract

When a semiconductor laser is subject to optical injection, it can enter the period-one dynamics through Hopf bifurcation. Under such nonlinear dynamics, equally and oppositely frequency-shifted optical signals from the injection emerge and are utilized for frequency conversion. Only a typical semiconductor laser is required as the conversion unit, where no pump or probe laser is necessary. The frequency shift can be continuously tuned by controlling the level or frequency of the injection. A bit-error ratio down to 1012 is observed with no or a slight power penalty for amplitude, frequency, and phase modulation at 2.5Gbitss, suggesting modulation format transparency of the system. Frequency down-, no-, and upconversion can be simultaneously achieved and individually selected, increasing the flexibility and reconfigurability of the system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Bracket, IEEE J. Sel. Areas Commun. 8, 948 (1990).
    [CrossRef]
  2. S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
    [CrossRef]
  3. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
    [CrossRef]
  4. J. Horer and E. Patzak, IEEE J. Quantum Electron. 33, 596 (1997).
    [CrossRef]
  5. S. K. Hwang and D. H. Liang, Appl. Phys. Lett. 89, 061120 (2006).
    [CrossRef]
  6. S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
    [CrossRef]
  7. S. K. Hwang, J. M. Liu, and J. K. White, IEEE Photon. Technol. Lett. 16, 972 (2004).
    [CrossRef]
  8. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
    [CrossRef] [PubMed]

2006

S. K. Hwang and D. H. Liang, Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef] [PubMed]

2004

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE Photon. Technol. Lett. 16, 972 (2004).
[CrossRef]

1997

J. Horer and E. Patzak, IEEE J. Quantum Electron. 33, 596 (1997).
[CrossRef]

1996

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

1990

C. A. Bracket, IEEE J. Sel. Areas Commun. 8, 948 (1990).
[CrossRef]

Bracket, C. A.

C. A. Bracket, IEEE J. Sel. Areas Commun. 8, 948 (1990).
[CrossRef]

Chan, S. C.

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Horer, J.

J. Horer and E. Patzak, IEEE J. Quantum Electron. 33, 596 (1997).
[CrossRef]

Hwang, S. K.

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef] [PubMed]

S. K. Hwang and D. H. Liang, Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE Photon. Technol. Lett. 16, 972 (2004).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Liang, D. H.

S. K. Hwang and D. H. Liang, Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

Liu, J. M.

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE Photon. Technol. Lett. 16, 972 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Patzak, E.

J. Horer and E. Patzak, IEEE J. Quantum Electron. 33, 596 (1997).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE Photon. Technol. Lett. 16, 972 (2004).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Appl. Phys. Lett.

S. K. Hwang and D. H. Liang, Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

IEEE J. Quantum Electron.

J. Horer and E. Patzak, IEEE J. Quantum Electron. 33, 596 (1997).
[CrossRef]

IEEE J. Sel. Areas Commun.

C. A. Bracket, IEEE J. Sel. Areas Commun. 8, 948 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE Photon. Technol. Lett. 16, 972 (2004).
[CrossRef]

J. Lightwave Technol.

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic and spectra of the proposed system.

Fig. 2
Fig. 2

Optical spectra of the P1 dynamics. (a)–(c) show the spectra for ( ξ , f ) = ( 0.3 , 50 GHz ) , ( 0.4 , 50 GHz ) , and ( 0.4 , 30 GHz ) , respectively, with no modulation. (d)–(f) demonstrate the spectra for ( ξ , f ) = ( 0.4 , 50 GHz ) under AM, FM, and PM, respectively, where the bit rate is kept at 2.5 Gbits s and the modulation depth is kept at 0.1. The frequency axis is relative to the free-running frequency of the injected laser.

Fig. 3
Fig. 3

Frequency shift of the converted optical signal in terms of the injection condition. Circles, f = 50 GHz . Squares, ξ = 0.4 .

Fig. 4
Fig. 4

(a)–(c) BER in terms of SNR for frequency down- (circles), no- (triangles), and upconversion (squares) under AM, FM, and PM, respectively. BER of the data-modulated incoming optical signal is also shown as the solid curve in each plot. (d)–(f) Eye diagrams of frequency downconversion at BER of 10 9 for AM, FM, and PM, respectively. The injection condition is kept the same for all the plots as in Figs. 2d, 2e, 2f.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d a d t = 1 2 [ γ c γ n γ s J ̃ n ̃ γ p ( 2 a + a 2 ) ] ( 1 + a ) + F a + ξ γ c [ 1 + s ( t ) AM ] cos [ Ω t + ϕ + s ( t ) FM PM ] ,
d ϕ d t = b 2 [ γ c γ n γ s J ̃ n ̃ γ p ( 2 a + a 2 ) ] + F ϕ 1 + a ξ γ c [ 1 + s ( t ) AM ] 1 + a sin [ Ω t + ϕ + s ( t ) FM PM ] ,
d n ̃ d t = γ s n ̃ γ n ( 1 + a ) 2 n ̃ γ s J ̃ ( 2 a + a 2 ) + γ s γ p γ c J ̃ ( 2 a + a 2 ) ( 1 + a ) 2 .

Metrics