Abstract

In this work the concept of a Fresnel zone antenna for dual-band detection in the IR and millimeter wave region is presented. The design is based on a Fresnel zone plate lens in the IR that is transformed to serve as a millimeter-wave antenna. Two different designs are presented, a circular-zone design that gives a high diffractive efficiency in the IR and a square-zone design that gives a higher response in the millimeter band but a lower focusing efficiency in the IR. Both designs have an operation bandwidth with the same low frequency limit of 400GHz (750μm), which can be tailored by changing the number of Fresnel zones, and a high frequency limit of 4.5THz (65μm) for the circular-zone design and 5THz (59μm) for the square-zone design.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yujiri, M. Shoucri, and P. Moffa, IEEE Microw. Mag. 4, 39 (2003).
    [CrossRef]
  2. H. Chen and P. K. Varshney, Proc. SPIE 3719, 152 (1999).
    [CrossRef]
  3. F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
    [CrossRef]
  4. E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
    [CrossRef]
  5. F. J. González, J. Alda, B. Ilic, and G. D. Boreman, Appl. Opt. 43, 6067 (2004).
    [CrossRef] [PubMed]
  6. P. E. Mayes, Proc. IEEE 80, 103 (1992).
    [CrossRef]
  7. J. Alda and G. Boreman, Microwave Opt. Technol. Lett. 50, 536 (2008).
    [CrossRef]

2008

J. Alda and G. Boreman, Microwave Opt. Technol. Lett. 50, 536 (2008).
[CrossRef]

2005

F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

2004

2003

L. Yujiri, M. Shoucri, and P. Moffa, IEEE Microw. Mag. 4, 39 (2003).
[CrossRef]

2002

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
[CrossRef]

1999

H. Chen and P. K. Varshney, Proc. SPIE 3719, 152 (1999).
[CrossRef]

1992

P. E. Mayes, Proc. IEEE 80, 103 (1992).
[CrossRef]

Alda, J.

Bhupathiraju, A. K.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
[CrossRef]

Boreman, G.

J. Alda and G. Boreman, Microwave Opt. Technol. Lett. 50, 536 (2008).
[CrossRef]

Boreman, G. D.

F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

F. J. González, J. Alda, B. Ilic, and G. D. Boreman, Appl. Opt. 43, 6067 (2004).
[CrossRef] [PubMed]

Chen, H.

H. Chen and P. K. Varshney, Proc. SPIE 3719, 152 (1999).
[CrossRef]

González, F. J.

F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

F. J. González, J. Alda, B. Ilic, and G. D. Boreman, Appl. Opt. 43, 6067 (2004).
[CrossRef] [PubMed]

Grossman, E. N.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
[CrossRef]

Ilic, B.

Mayes, P. E.

P. E. Mayes, Proc. IEEE 80, 103 (1992).
[CrossRef]

Miller, A. J.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
[CrossRef]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, IEEE Microw. Mag. 4, 39 (2003).
[CrossRef]

Reintsema, C. D.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
[CrossRef]

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, IEEE Microw. Mag. 4, 39 (2003).
[CrossRef]

Varshney, P. K.

H. Chen and P. K. Varshney, Proc. SPIE 3719, 152 (1999).
[CrossRef]

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, IEEE Microw. Mag. 4, 39 (2003).
[CrossRef]

Appl. Opt.

IEEE Microw. Mag.

L. Yujiri, M. Shoucri, and P. Moffa, IEEE Microw. Mag. 4, 39 (2003).
[CrossRef]

Infrared Phys. Technol.

F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

Microwave Opt. Technol. Lett.

J. Alda and G. Boreman, Microwave Opt. Technol. Lett. 50, 536 (2008).
[CrossRef]

Proc. IEEE

P. E. Mayes, Proc. IEEE 80, 103 (1992).
[CrossRef]

Proc. SPIE

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, Proc. SPIE 4719, 364 (2002).
[CrossRef]

H. Chen and P. K. Varshney, Proc. SPIE 3719, 152 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dual-band FZA consisting of two antenna-coupled microbolometers tuned for IR and millimeter-wave detection. The bolometer for the millimeter-wave detection is at the center of the FZA, and it is shown in gray. The millimeter-wave antenna also serves the purpose of a diffractive focusing element in the IR.

Fig. 2
Fig. 2

Spiral antenna response at millimeter wavelengths for linear and circular polarizations. The shape of the modified circular FZPL is shown in the inset. LHCP, left-handed circular polarization; RHCP, right-handed circular polarization.

Fig. 3
Fig. 3

Square-spiral antenna response at millimeter wavelengths for linear and circular polarizations. The shape of the modified square FZPL is shown in the inset. LHCP, left-handed circular polarization; RHCP, right-handed circular polarization.

Tables (1)

Tables Icon

Table 1 Values of the Gain Obtained at the Plane of the IR Detector When Including the FZA a

Metrics