Abstract

We compare imaging based on coherent and spontaneous Raman scattering (SpRS) under conditions relevant for biological imaging. Using a broadband laser source, we perform spectral domain imaging of polystyrene beads using coherent Stokes Raman scattering and SpRS and find comparable signal levels. Short interaction lengths, low molecule number, and low incident power all reduce the advantages available with coherent Raman methods. We present calculations to support our measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  2. J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
    [CrossRef]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  4. M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
    [CrossRef]
  5. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, Opt. Lett. 31, 480 (2006).
    [CrossRef] [PubMed]
  6. W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, Appl. Spectrosc. 31, 253 (1977).
    [CrossRef]
  7. M. D. Levenson and J. J. Song, in Coherent Nonlinear Optics--Topics in Current Physics, M.S.Feld and V.S.Letokhov, eds. (Springer-Verlag, 1980), p. 293.
    [CrossRef]
  8. G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
    [CrossRef] [PubMed]
  9. D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, Opt. Lett. 32, 1725 (2007).
    [CrossRef] [PubMed]
  10. K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, Opt. Lett. 24, 113 (1999).
    [CrossRef]
  11. K. Konig, P. T. C. So, W. W. Mantulin, and E. Gratton, Opt. Lett. 22, 135 (1997).
    [CrossRef] [PubMed]
  12. M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
    [CrossRef]
  13. J. G. Skinner and W. G. Nilsen, J. Opt. Soc. Am. 58, 113 (1968).
    [CrossRef]
  14. M. Cui, J. Skodack, and J. P. Ogilvie, Appl. Opt. 47, 5790 (2008).
    [CrossRef]

2008 (1)

2007 (2)

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, Opt. Lett. 32, 1725 (2007).
[CrossRef] [PubMed]

2006 (1)

2002 (2)

1999 (2)

1997 (1)

1982 (2)

M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
[CrossRef]

M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
[CrossRef] [PubMed]

1977 (1)

1968 (1)

Alexandrou, A.

Ariunbold, G. O.

Arora, R.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

Beaurepaire, E.

Becker, T. W.

Boxer, S. G.

M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
[CrossRef]

Cheng, J. X.

Cui, M.

Duncan, M. D.

Ediger, M. D.

M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
[CrossRef]

Fayer, M. D.

M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
[CrossRef]

Fischer, P.

Gratton, E.

Halbhuber, K. J.

Harvey, A. B.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Joffre, M.

Konig, K.

Levenson, M. D.

M. D. Levenson and J. J. Song, in Coherent Nonlinear Optics--Topics in Current Physics, M.S.Feld and V.S.Letokhov, eds. (Springer-Verlag, 1980), p. 293.
[CrossRef]

Mantulin, W. W.

Manuccia, T. J.

McDonald, J. R.

Moog, R. S.

M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
[CrossRef]

Muller, M.

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Murawski, R. K.

Nibler, J. W.

Nilsen, W. G.

Ogilvie, J. P.

Pestov, D.

Petrov, G. I.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

Reintjes, J.

Riemann, I.

Sautenkov, V. A.

Schins, J. M.

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Scully, M. O.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, Opt. Lett. 32, 1725 (2007).
[CrossRef] [PubMed]

Skinner, J. G.

Skodack, J.

So, P. T. C.

Sokolov, A. V.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, Opt. Lett. 32, 1725 (2007).
[CrossRef] [PubMed]

Song, J. J.

M. D. Levenson and J. J. Song, in Coherent Nonlinear Optics--Topics in Current Physics, M.S.Feld and V.S.Letokhov, eds. (Springer-Verlag, 1980), p. 293.
[CrossRef]

Tolles, W. M.

Volkmer, A.

Wang, X.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, Opt. Lett. 32, 1725 (2007).
[CrossRef] [PubMed]

Xie, X. S.

J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Yakovlev, V. V.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

M. D. Ediger, R. S. Moog, S. G. Boxer, and M. D. Fayer, Chem. Phys. Lett. 88, 123 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. USA 104, 7776 (2007).
[CrossRef] [PubMed]

Other (1)

M. D. Levenson and J. J. Song, in Coherent Nonlinear Optics--Topics in Current Physics, M.S.Feld and V.S.Letokhov, eds. (Springer-Verlag, 1980), p. 293.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Energy level diagram for time-delayed CSRS. (b) Spectrum used for the CSRS experiment. The two pump beams are blocked for the SpRS measurements. (c) Experimental setup.

Fig. 2
Fig. 2

Comparison of coherent and SpRS imaging of polystyrene beads. (a) CSRS image of 4.3 μ m beads and (b) corresponding SpRS image using 1.3 mW total power, 200 ms pixel for both measurements. (c) CSRS image of the same sample ( 4 mW total power, 40 ms pixel ). (d) CSRS image of 7.3 μ m beads and (e) corresponding SpRS image ( 1.3 mW total power, 100 ms pixel ). (f) Averaged CSRS (solid) and SpRS spectra (dashed) from 400 pixels at the bead centers in images (a) and (b).

Fig. 3
Fig. 3

Dependence of the ratio of CSRS/SpRS signal as a function of power and concentration. The solid line indicates equal coherent and spontaneous signals, corresponding to the measurement on 4.3 μ m polystyrene beads (star) and the expected power and concentration dependence. The projected equivalence line for NA 1.2 and an optimized power ratio for CSRS is also shown (dashed). Arrows indicate power measurements determined to induce cellular photodamage: a, 2–3 mW, 150 fs pulses, 80 μ s dwell time[11]; b, 4.5 mW , 240 fs pulses duration, 60 μ s dwell time; c, 7.3 mW , 2.2 ps pulse duration, 60 μ s dwell time [10]. The dotted box indicates the area most relevant for biological imaging.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P Raman = ( c 8 π ) E pr 2 A L N d σ d Ω Ω coll ,
P CSRS = 0 ( 2 π ω CSRS 2 c n s 2 ) L 2 A 3 8 0 χ ( 3 ) B ( Δ ) E pr ( ω + Δ ) d Δ 2 d ω ,

Metrics