Abstract

We present a single-photodetector-based hyperspectral imaging system that utilizes a microelectrical-mechanical-systems-driven diffraction grating for fast spatial scanning and two synchronized steering mirrors for slow spectral scanning. This configuration allows high-speed scanning without degradation in optical performance resulting from dynamic non-rigid-body deformation of the platform. The proposed operational principle is demonstrated with a prototype device developed using silicon microfabrication technology. The proposed spectral imaging system has the potential to achieve low cost, small form factor, and high-speed operation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Garini, I. T. Young, and G. McNamara, Cytometry 69A, 735 (2006).
    [CrossRef]
  2. R. G. Sellar and G. D. Boreman, Opt. Eng. 44, 013602 (2005).
    [CrossRef]
  3. G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
    [CrossRef]
  4. L. Beiser, Holographic Scanning (Wiley, 1988).

2008

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

2006

Y. Garini, I. T. Young, and G. McNamara, Cytometry 69A, 735 (2006).
[CrossRef]

2005

R. G. Sellar and G. D. Boreman, Opt. Eng. 44, 013602 (2005).
[CrossRef]

Beiser, L.

L. Beiser, Holographic Scanning (Wiley, 1988).

Boreman, G. D.

R. G. Sellar and G. D. Boreman, Opt. Eng. 44, 013602 (2005).
[CrossRef]

Chau, F. S.

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

Du, Y.

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

Feng, H.

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, Cytometry 69A, 735 (2006).
[CrossRef]

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, Cytometry 69A, 735 (2006).
[CrossRef]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, Opt. Eng. 44, 013602 (2005).
[CrossRef]

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, Cytometry 69A, 735 (2006).
[CrossRef]

Zhang, Q.

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

Zhou, G.

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

Cytometry

Y. Garini, I. T. Young, and G. McNamara, Cytometry 69A, 735 (2006).
[CrossRef]

J. Micromech. Microeng.

G. Zhou, Y. Du, Q. Zhang, H. Feng, and F. S. Chau, J. Micromech. Microeng. 18, 085013 (2008).
[CrossRef]

Opt. Eng.

R. G. Sellar and G. D. Boreman, Opt. Eng. 44, 013602 (2005).
[CrossRef]

Other

L. Beiser, Holographic Scanning (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microscopic image of a MEMS-driven vibratory grating scanner (inset shows a schematic of the proposed hyperspectral imaging approach).

Fig. 2
Fig. 2

(a) γ δ θ and (b) γ δ ( λ d ) as functions of normalized wavelength and field angle.

Fig. 3
Fig. 3

Schematic illustration of the experimental setup.

Fig. 4
Fig. 4

Acquired hyperspectral image of the line test target.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin α = λ d d λ , sin β = d λ ,

Metrics