Abstract

By exploiting photoinduced reorientation in azo-polymer thin films, we demonstrate all-optical polarization-encoded information storage with a scanning near-field optical microscope. In the writing routine, five-level bits are created by associating different bit values to different birefringence directions, induced in the polymer after illumination with linearly polarized light. The reading routine is then performed by implementing polarization-modulation techniques on the same near-field microscope in order to measure the encoded birefringence direction.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Scott and L. D. Bolzano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
    [CrossRef]
  2. C. S. Paik and H. Morawetz, Macromolecules 5, 171 (1972).
    [CrossRef]
  3. A. Natansohn and P. Rochon, Chem. Rev. (Washington, D.C.) 102, 4139 (2002).
  4. A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
    [CrossRef]
  5. B. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron 49, 8267 (1993).
    [CrossRef]
  6. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, Opt. Express 14, 9896 (2006).
    [CrossRef] [PubMed]
  7. P. S. Ramanujam, M. Petersen, and S. Hvilsted, Appl. Phys. Lett. 74, 3227 (1999).
    [CrossRef]
  8. S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, Opt. Express 13, 505 (2005).
    [CrossRef] [PubMed]
  9. X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
    [CrossRef]
  10. V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
    [CrossRef]
  11. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2007).
  12. P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Appl. Opt. 32, 7277 (1993).
    [CrossRef] [PubMed]
  13. P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
    [CrossRef]
  14. The reported powers are intended to be the ones incident into the tip. The measured far-field throughput of our NSOM tips is typically 5×10−3 for λ=532 nm.
  15. D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116 (1995).
    [CrossRef]
  16. X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
    [CrossRef]
  17. G. Y. Yager and C. J. J. Barrett, Chem. Phys. 120, 1089 (2004).

2008 (1)

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

2007 (1)

J. C. Scott and L. D. Bolzano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
[CrossRef]

2006 (1)

2005 (2)

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, Opt. Express 13, 505 (2005).
[CrossRef] [PubMed]

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

2004 (1)

G. Y. Yager and C. J. J. Barrett, Chem. Phys. 120, 1089 (2004).

2003 (1)

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

2002 (1)

A. Natansohn and P. Rochon, Chem. Rev. (Washington, D.C.) 102, 4139 (2002).

1999 (1)

P. S. Ramanujam, M. Petersen, and S. Hvilsted, Appl. Phys. Lett. 74, 3227 (1999).
[CrossRef]

1996 (1)

X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
[CrossRef]

1995 (1)

D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116 (1995).
[CrossRef]

1993 (2)

P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Appl. Opt. 32, 7277 (1993).
[CrossRef] [PubMed]

B. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron 49, 8267 (1993).
[CrossRef]

1992 (1)

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
[CrossRef]

1972 (1)

C. S. Paik and H. Morawetz, Macromolecules 5, 171 (1972).
[CrossRef]

Allegrini, M.

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Arena, A.

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Barrett, C.

X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
[CrossRef]

Barrett, C. J. J.

G. Y. Yager and C. J. J. Barrett, Chem. Phys. 120, 1089 (2004).

Biagioni, P.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Bidault, S.

Bissonnette, D.

Boeglin, A.

Bolzano, L. D.

J. C. Scott and L. D. Bolzano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
[CrossRef]

Brasselet, S.

Brown, D.

D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116 (1995).
[CrossRef]

Cerullo, G.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Chon, J. W. M.

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

de Lange, B.

B. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron 49, 8267 (1993).
[CrossRef]

Dorkenoo, K. D.

Duò, L.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Evans, R. A.

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

Feringa, B. L.

B. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron 49, 8267 (1993).
[CrossRef]

Finazzi, M.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Fort, A.

Gindre, D.

Giordano, M.

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Gosselin, J.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
[CrossRef]

Gouya, J.

Gu, M.

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2007).

Hvilsted, S.

P. S. Ramanujam, M. Petersen, and S. Hvilsted, Appl. Phys. Lett. 74, 3227 (1999).
[CrossRef]

Jager, W. F.

B. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron 49, 8267 (1993).
[CrossRef]

Labardi, M.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Li, X.

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

Likodimos, V.

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Mager, L.

Meng, X.

X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
[CrossRef]

Morawetz, H.

C. S. Paik and H. Morawetz, Macromolecules 5, 171 (1972).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, Chem. Rev. (Washington, D.C.) 102, 4139 (2002).

X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
[CrossRef]

D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116 (1995).
[CrossRef]

P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Appl. Opt. 32, 7277 (1993).
[CrossRef] [PubMed]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2007).

Paik, C. S.

C. S. Paik and H. Morawetz, Macromolecules 5, 171 (1972).
[CrossRef]

Pardi, L.

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Patanè, S.

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Petersen, M.

P. S. Ramanujam, M. Petersen, and S. Hvilsted, Appl. Phys. Lett. 74, 3227 (1999).
[CrossRef]

Polli, D.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Pucci, A.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Ramanujam, P. S.

P. S. Ramanujam, M. Petersen, and S. Hvilsted, Appl. Phys. Lett. 74, 3227 (1999).
[CrossRef]

Rochon, P.

A. Natansohn and P. Rochon, Chem. Rev. (Washington, D.C.) 102, 4139 (2002).

X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
[CrossRef]

D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116 (1995).
[CrossRef]

P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Appl. Opt. 32, 7277 (1993).
[CrossRef] [PubMed]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
[CrossRef]

Ruggeri, G.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

Scott, J. C.

J. C. Scott and L. D. Bolzano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
[CrossRef]

Xie, S.

P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Appl. Opt. 32, 7277 (1993).
[CrossRef] [PubMed]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
[CrossRef]

Yager, G. Y.

G. Y. Yager and C. J. J. Barrett, Chem. Phys. 120, 1089 (2004).

Zyss, J.

Adv. Mater. (Weinheim, Ger.) (1)

J. C. Scott and L. D. Bolzano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duò, Appl. Phys. Lett. 87, 223112 (2005).
[CrossRef]

P. S. Ramanujam, M. Petersen, and S. Hvilsted, Appl. Phys. Lett. 74, 3227 (1999).
[CrossRef]

X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 92, 063309 (2008).
[CrossRef]

V. Likodimos, M. Labardi, L. Pardi, M. Allegrini, M. Giordano, A. Arena, and S. Patanè, Appl. Phys. Lett. 82, 3313 (2003).
[CrossRef]

Chem. Phys. (1)

G. Y. Yager and C. J. J. Barrett, Chem. Phys. 120, 1089 (2004).

Chem. Rev. (Washington, D.C.) (1)

A. Natansohn and P. Rochon, Chem. Rev. (Washington, D.C.) 102, 4139 (2002).

Macromolecules (4)

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268 (1992).
[CrossRef]

C. S. Paik and H. Morawetz, Macromolecules 5, 171 (1972).
[CrossRef]

D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116 (1995).
[CrossRef]

X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946 (1996).
[CrossRef]

Opt. Express (2)

Tetrahedron (1)

B. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron 49, 8267 (1993).
[CrossRef]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2007).

The reported powers are intended to be the ones incident into the tip. The measured far-field throughput of our NSOM tips is typically 5×10−3 for λ=532 nm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Birefringence map of a sample region containing four different pentabits. A constant background has been subtracted. The light gray arrows represent the different orientations of the birefringence axis associated with each pentabit, while the dark gray arrow (red online) indicates the decoding polarization direction. The values of the angle ϕ between the gray and red arrows are also indicated. (b) Line profile of the pentabits: four well-defined levels ( 1 , 0.5 , 0.5 , 1 ) are visible. The fifth level (0) is represented by the signal associated with nonencoded areas. The FWHM of each pentabit is 250 ± 15 nm .

Fig. 2
Fig. 2

Overwriting the information: the pentabit on the right in (a) is reencoded with the opposite value in (b), while the left one is maintained as a reference; ϕ is the angle between the encoded birefringence axis and the decoding polarization direction. (c) Pentabit line profile before and after the overwriting procedure.

Fig. 3
Fig. 3

(a) Signal of two nominally equal pentabits ( ϕ = + 45 ° for both pentabits) encoded with the same total exposure energy ( 30 mW s ) , but different exposition times T exp . (b) Line profile of the two pentabits. The FWHM of the pentabits is 300 nm (left) and 250 nm (right), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S d λ Δ n sin ( 2 ϕ ) ,

Metrics