Abstract

We propose and analyze a flat-top pulse generator based on a fiber Bragg grating (FBG) in transmission. As is shown in the examples, a uniform period FBG properly designed can exhibit a spectral response in transmission close to sinc function (in amplitude and phase) in a certain bandwidth, because of the logarithm Hilbert transform relations, which can be used to reshape a Gaussian-like input pulse into a flat-top pulse.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
    [CrossRef]
  2. J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
    [CrossRef]
  3. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, Opt. Express 14, 12670 (2006).
    [CrossRef] [PubMed]
  4. K. Hinton, J. Lightwave Technol. 16, 2336 (1998).
    [CrossRef]
  5. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
    [CrossRef]
  6. J. Skaar, J. Opt. Soc. Am. A 18, 557 (2001).
    [CrossRef]
  7. N. Q. Ngo, Opt. Lett. 32, 3020 (2007).
    [CrossRef]
  8. M. H. Asghari and J. Azaña, Opt. Express 16, 11459 (2008).
    [CrossRef] [PubMed]
  9. M. A. Preciado and M. A. Muriel, Opt. Lett. 33, 2458 (2008).
    [CrossRef] [PubMed]
  10. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Opt. Commun. 269, 199 (2007).
    [CrossRef]
  11. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
    [CrossRef]
  12. J. Capmany, M. A. Muriel, and S. Sales, Opt. Lett. 32, 2312 (2007).
    [CrossRef] [PubMed]
  13. A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007).
  14. M. Ibsen and R. Feced, Opt. Lett. 28, 980 (2003).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

2006 (1)

2003 (1)

2002 (1)

J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
[CrossRef]

2001 (2)

1999 (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

1998 (1)

1997 (1)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Asghari, M. H.

Azaña, J.

Capmany, J.

Digonnet, M. J. F.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Opt. Commun. 269, 199 (2007).
[CrossRef]

Eggleton, B. J.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Ellis, A. D.

Feced, R.

M. Ibsen and R. Feced, Opt. Lett. 28, 980 (2003).
[CrossRef] [PubMed]

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Hinton, K.

Ibsen, M.

Kino, G. S.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Opt. Commun. 269, 199 (2007).
[CrossRef]

Kulishov, M.

Lee, J. H.

J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Muriel, M. A.

Ngo, N. Q.

Ozcan, A.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Opt. Commun. 269, 199 (2007).
[CrossRef]

Park, Y.

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Petropoulos, P.

J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
[CrossRef]

Preciado, M. A.

Richardson, D. J.

J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
[CrossRef]

Sales, S.

Skaar, J.

Slavík, R.

The, P. C.

J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007).

Yeh, P.

A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007).

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Opt. Commun. 269, 199 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the system. An FBG working in transmission shapes a flat-top pulse in the corresponding WDM channel. The output signal also includes the signal in other WDM channels.

Fig. 2
Fig. 2

Grating profile obtained by inverse scattering in a positive and negative representation, where each zero crossing of κ ( z ) implies a spatial π-phase shift in the grating.

Fig. 3
Fig. 3

Spectral response in transmission of (a) FBG 1 ; (b) the system composed of FBG 1 concatenated with FBG 2 .

Fig. 4
Fig. 4

Temporal waveforms of the input signal (dashed curve), and the output signal (solid curve) in the examples: (a) FBG 1 applied over a 7 ps Gaussian pulse at 193 THz ; (b) FBG 1 , applied over a signal composed of four 7 ps Gaussian pulses at several frequencies, where only the pulse in the FBG 1 resonant band is processed; (c) FBG 1 and FBG2 concatenated, applied over the same previous signal, where only the pulses in the FBG 1 and FBG 2 resonant bands are processed. Note that the output signal also includes the unprocessed pulses outside the FBG resonant bands, which are hardly distinguishable from the input signal pulses in (b) and (c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H R ( ω ) = W ( ω ) R max ( 1 C sinc ( ω T 2 ) 2 ) ,

Metrics