Abstract

A photonic-assisted approach to microwave frequency measurement is proposed based on frequency-to-power mapping with the help of the so-called amplitude comparison function. The key component is a dual-output Mach–Zehnder modulator (MZM) working at chirped modulation. The proposed scheme is characterized as having simplicity, higher resolution, and tunable measurement range. Owing to experimental constraint, an equivalent experiment has been carried out using a common single-output MZM at different bias points to prove the concept.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
    [CrossRef]
  2. S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
    [CrossRef]
  3. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188, (2006).
    [CrossRef]
  4. X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
    [CrossRef]
  5. H. Chi, X. Zou, and J. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
    [CrossRef]
  6. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
    [CrossRef]

2008 (2)

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

H. Chi, X. Zou, and J. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

2006 (3)

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188, (2006).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Chazelas, J.

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Chi, H.

H. Chi, X. Zou, and J. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

Dolfi, D.

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Formont, S.

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Goldstein, S. T.

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Huignard, J.-P.

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188, (2006).
[CrossRef]

Minasian, R. A.

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

Monsterleet, A.

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188, (2006).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Yao, J.

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

H. Chi, X. Zou, and J. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

Zou, X.

H. Chi, X. Zou, and J. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188, (2006).
[CrossRef]

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

H. Chi, X. Zou, and J. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

S. T. Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, IEEE Trans. Microwave Theory Tech. 54, 847 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the proposed scheme, (b) layout of a typical dual-output MZM.

Fig. 2
Fig. 2

Power-fading functions and resultant ACF.

Fig. 3
Fig. 3

Experimental setup for proof of concept. VNA, vector network analyzer.

Fig. 4
Fig. 4

Measurement results for λ = 1460 nm . (a) Measured power fading functions and ACFs, (b) estimated frequency as a function of input frequency, (c) measurement error as a function of input frequency.

Fig. 5
Fig. 5

Measured ACFs for different wavelengths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1 , out = E in sin ( π v ( t ) 2 V π + φ 2 + π 4 ) exp ( j π v ( t ) 2 V π + j φ 2 + j π 4 ) ,
E 2 , out = E in cos ( π v ( t ) 2 V π + φ 2 + π 4 ) exp ( j π v ( t ) 2 V π + j φ 2 + j π 4 ) ,
H 1 , 2 ( f ) = cos 2 ( π D λ 2 f 2 c ± π 4 ) ,
ACF = H 1 ( f ) H 2 ( f ) = tan 2 ( π D λ 2 f 2 c π 4 ) .
E out E in cos ( π v ( t ) 2 V π + θ 2 ) exp ( j π v ( t ) 2 V π + j θ 2 ) ,

Metrics