Abstract

Coherent oscillation is achieved in the geometry of a double-phase conjugate mirror in nominally undoped Sn2P2S6 with 647nm radiation of a Kr+ laser. The specific temporal dynamics of oscillation with modulated intensity and periodic 0π0π variations of the oscillation wave phase is similar to that observed earlier using a semilinear oscillator geometry. The described oscillator ensures submillisecond delay time in the appearance of the phase conjugate wave.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
    [CrossRef]
  2. B. Fischer, S. Sternklar, and S. Weiss, IEEE J. Quantum Electron. QE-25, 550 (1989).
    [CrossRef]
  3. Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.
  4. T. Bach, M. Fretz, M. Jazbinšek, and P. Günter, Opt. Express 16, 15415 (2008).
    [CrossRef] [PubMed]
  5. D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
    [CrossRef]
  6. A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, Phys. Rev. A 72, 023819 (2005).
    [CrossRef]
  7. I. Seres, S. Stepanov, S. Mansurova, and A. Grabar, J. Opt. Soc. Am. B 17, 1986 (2001).
    [CrossRef]

2008 (1)

2005 (1)

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, Phys. Rev. A 72, 023819 (2005).
[CrossRef]

2003 (1)

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

2001 (1)

1989 (1)

B. Fischer, S. Sternklar, and S. Weiss, IEEE J. Quantum Electron. QE-25, 550 (1989).
[CrossRef]

Bach, T.

Caimi, G.

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Fischer, B.

B. Fischer, S. Sternklar, and S. Weiss, IEEE J. Quantum Electron. QE-25, 550 (1989).
[CrossRef]

Fretz, M.

Grabar, A.

I. Seres, S. Stepanov, S. Mansurova, and A. Grabar, J. Opt. Soc. Am. B 17, 1986 (2001).
[CrossRef]

Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Grabar, A. A.

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Günter, P.

T. Bach, M. Fretz, M. Jazbinšek, and P. Günter, Opt. Express 16, 15415 (2008).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Haertle, D.

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Hryhorashchuk, A.

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, Phys. Rev. A 72, 023819 (2005).
[CrossRef]

Jazbinšek, M.

T. Bach, M. Fretz, M. Jazbinšek, and P. Günter, Opt. Express 16, 15415 (2008).
[CrossRef] [PubMed]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Kojima, Y.

Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.

Mansurova, S.

Montemezzani, G.

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Odoulov, S.

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, Phys. Rev. A 72, 023819 (2005).
[CrossRef]

Okamoto, A.

Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.

Seres, I.

Shimayabu, K.

Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.

Shumelyuk, A.

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, Phys. Rev. A 72, 023819 (2005).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Stepanov, S.

Sternklar, S.

B. Fischer, S. Sternklar, and S. Weiss, IEEE J. Quantum Electron. QE-25, 550 (1989).
[CrossRef]

Stoika, I. M.

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Takabayashi, M.

Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.

Vysochanskii, Yu. M.

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Weiss, S.

B. Fischer, S. Sternklar, and S. Weiss, IEEE J. Quantum Electron. QE-25, 550 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. Fischer, S. Sternklar, and S. Weiss, IEEE J. Quantum Electron. QE-25, 550 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Haertle, G. Caimi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, Phys. Rev. A 72, 023819 (2005).
[CrossRef]

Other (2)

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Y. Kojima, A. Okamoto, A. Grabar, M. Takabayashi, and K. Shimayabu, presented at Russian-CIS-Baltic-Japan Symposium on Ferroelectricity, Vilnius, Lithuania, June 2008, submitted to Ferroelectrics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of (a) beam coupling and (b) DPCM geometries. In (a) signal beam 4 is amplified at the expense of coherent pump beam 1. In (b) the path difference of beams 4 and 2, which impinge upon the sample, is larger than the laser coherence length, and new beams 3 and 1 are generated. The structure of the index grating is shown inside the samples.

Fig. 2
Fig. 2

Grating-spacing dependence of the gain factor Γ at 647 nm for intensities of the pump wave 0.1, 1.0, and 10 W cm 2 (triangles, squares, and dots, respectively.)

Fig. 3
Fig. 3

Temporal dynamics of the oscillation intensity (a) just after exposure of a virgin sample and (b) for well-established oscillation ( Λ = 1.4 μ m , r = 4 ). Note the difference in the time scale for the two frames.

Fig. 4
Fig. 4

(a) Phase-conjugate reflectivity and (b) period of intensity variation versus beam ratio for Λ = 1.4 μ m . The solid line is the dependence calculated in plane-wave approximation [2] for lossless medium and Γ l = 8 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ l th = 2 ( r + 1 r 1 ) ln r .

Metrics