Abstract

A localized long-period fiber grating emerges in a silica optical fiber transmitting femtosecond pulse-induced supercontinuum. Simultaneously, a specific higher-order fiber cladding mode associated with the grating gains amplification at the expense of the fiber core mode. The grating has a period dependent on the dielectric structure of the fiber and is therefore classified as a self-organized structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  3. H. Tu, D. L. Marks, Y. L. Koh, and S. A. Boppart, Opt. Lett. 32, 2037 (2007).
    [CrossRef] [PubMed]
  4. H. Tu, Y. L. Koh, D. L. Marks, and S. A. Boppart, J. Opt. Soc. Am. B 25, 274 (2008).
    [CrossRef] [PubMed]
  5. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
    [CrossRef]
  6. D. N. Nikogosyan, Meas. Sci. Technol. 18, R1 (2007).
    [CrossRef]
  7. A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, Appl. Opt. 24, 4404 (1985).
    [CrossRef] [PubMed]
  8. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998), p. 160.
  9. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [CrossRef]
  10. H. Tu, D. L. Marks, Z. Jiang, and S. A. Boppart, Appl. Phys. Lett. 92, 061104 (2008).
    [CrossRef]

2008

H. Tu, D. L. Marks, Z. Jiang, and S. A. Boppart, Appl. Phys. Lett. 92, 061104 (2008).
[CrossRef]

H. Tu, Y. L. Koh, D. L. Marks, and S. A. Boppart, J. Opt. Soc. Am. B 25, 274 (2008).
[CrossRef] [PubMed]

2007

2006

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2003

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

1997

1985

1978

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Arie, Y.

Boppart, S. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Erdogan, T.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Ghatak, A.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998), p. 160.

Hammer, J. M.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Huang, A. S.

James, S. W.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Jiang, Z.

H. Tu, D. L. Marks, Z. Jiang, and S. A. Boppart, Appl. Phys. Lett. 92, 061104 (2008).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Koh, Y. L.

Marks, D. L.

Neil, C. C.

Nikogosyan, D. N.

D. N. Nikogosyan, Meas. Sci. Technol. 18, R1 (2007).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998), p. 160.

Tu, H.

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

H. Tu, D. L. Marks, Z. Jiang, and S. A. Boppart, Appl. Phys. Lett. 92, 061104 (2008).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Meas. Sci. Technol.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

D. N. Nikogosyan, Meas. Sci. Technol. 18, R1 (2007).
[CrossRef]

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998), p. 160.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for in-fiber waveguide characterization.

Fig. 2
Fig. 2

Observed far-field pattern of the exiting beam from the control UHNA3 fiber (upper left) and the irradiated UHNA3 fiber (upper right) along with the magnified image of a sector of the latter (middle) at a probe wavelength of 710 nm ; (bottom) calculated far-field angular intensity distribution of v = 57 cladding mode from the UHNA3 fiber at 710 nm .

Fig. 3
Fig. 3

Grating period Λ as a function of wavelength λ and cladding mode order v for the (a) UHNA3 fiber and (c) UHNA1 fiber; (b) observed and calculated divergence angle θ of the far-field ring as functions of the wavelength λ for the UHNA1 and UHNA3 fibers.

Fig. 4
Fig. 4

Normalized coupling constant as a function of cladding mode order v for the UHNA1 and UHNA3 fibers.

Tables (1)

Tables Icon

Table 1 Specifications and Derived Properties of the UHNA1 and UHNA3 Fibers

Metrics