Abstract

Using transformation optics a frequency-selective superabsorber can be constructed that consists of an absorbing core material coated with a shell of isotropic double negative metamaterial. For a fixed volume its absorption cross section can be made arbitrarily large at one frequency. The double-negative shell serves to amplify the evanescent tail of the high-order cylindrical waves, which induces strong scattering and absorption. Our conclusion is supported by both analytical Mie theory and numerical finite-element simulation. Interesting applications of such a device are discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren, Am. J. Phys. 51, 323 (1983).
    [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt, Science 312, 1777 (2006).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
    [CrossRef] [PubMed]
  5. H. Y. Chen and C. T. Chan, Appl. Phys. Lett. 90, 241105 (2007).
    [CrossRef]
  6. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
    [CrossRef]
  7. There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  8. T. Yang, H. Y. Chen, X. Luo, and H. Ma, Opt. Express 16, 18545 (2008).
    [CrossRef] [PubMed]
  9. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev. B 49, 8479 (1994).
    [CrossRef]
  10. J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).
    [CrossRef]
  11. U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
    [CrossRef]
  12. G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
    [CrossRef]
  13. H. Y. Chen, X. Luo, H. Ma, and C. T. Chan, Opt. Express 16, 14603 (2008).
    [CrossRef] [PubMed]
  14. H. Y. Chen, X. H. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys. 10, 113016 (2008).
    [CrossRef]
  15. We note that the connection between negative refraction and transformation optics was pointed out in .
  16. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]

2008

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, Opt. Express 16, 18545 (2008).
[CrossRef] [PubMed]

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

H. Y. Chen, X. Luo, H. Ma, and C. T. Chan, Opt. Express 16, 14603 (2008).
[CrossRef] [PubMed]

H. Y. Chen, X. H. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys. 10, 113016 (2008).
[CrossRef]

2007

H. Y. Chen and C. T. Chan, Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
[CrossRef]

2003

J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).
[CrossRef]

2000

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1994

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev. B 49, 8479 (1994).
[CrossRef]

1983

C. F. Bohren, Am. J. Phys. 51, 323 (1983).
[CrossRef]

Bohren, C. F.

C. F. Bohren, Am. J. Phys. 51, 323 (1983).
[CrossRef]

Chan, C. T.

H. Y. Chen, X. Luo, H. Ma, and C. T. Chan, Opt. Express 16, 14603 (2008).
[CrossRef] [PubMed]

H. Y. Chen, X. H. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys. 10, 113016 (2008).
[CrossRef]

H. Y. Chen and C. T. Chan, Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Chen, H. Y.

T. Yang, H. Y. Chen, X. Luo, and H. Ma, Opt. Express 16, 18545 (2008).
[CrossRef] [PubMed]

H. Y. Chen, X. H. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys. 10, 113016 (2008).
[CrossRef]

H. Y. Chen, X. Luo, H. Ma, and C. T. Chan, Opt. Express 16, 14603 (2008).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Cherednichenko, K.

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Jacob, Z.

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Landy, N. I.

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
[CrossRef]

Luo, X.

Ma, H.

McPhedran, R. C.

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev. B 49, 8479 (1994).
[CrossRef]

Milton, G. W.

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev. B 49, 8479 (1994).
[CrossRef]

Mock, J. J.

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Nicorovici, N. A.

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev. B 49, 8479 (1994).
[CrossRef]

Nicorovici, N. P.

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

Padilla, W. J.

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).
[CrossRef]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

Sajuyigbe, S.

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Smith, D. R.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Yang, T.

Zhang, X. H.

H. Y. Chen, X. H. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys. 10, 113016 (2008).
[CrossRef]

Am. J. Phys.

C. F. Bohren, Am. J. Phys. 51, 323 (1983).
[CrossRef]

Appl. Phys. Lett.

H. Y. Chen and C. T. Chan, Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

J. Phys. Condens. Matter

J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).
[CrossRef]

New J. Phys.

U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
[CrossRef]

G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, New J. Phys. 10, 115021 (2008).
[CrossRef]

H. Y. Chen, X. H. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys. 10, 113016 (2008).
[CrossRef]

Opt. Express

Photonics Nanostruct. Fundam. Appl.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008).
[CrossRef]

Phys. Rev. B

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev. B 49, 8479 (1994).
[CrossRef]

Phys. Rev. Lett.

There is already a device known as the perfect metamaterial absorber. The SA proposed here is different from the perfect metamaterial absorber. The former is to achieve arbitrarily large absorption efficiency, whereas the latter is to mimic a blackbody. In fact, it is also possible to design an SA such that it behaves as a near ideal blackbody, with a high absorption efficiency and a low scattering efficiency. See N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Other

We note that the connection between negative refraction and transformation optics was pointed out in .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Extinction and absorption efficiencies for the SA, with core constitutive parameter μ c = 1 + i , ε c = ( 1 + i ) b 4 a 4 , k 0 b = 2 , and a is varying. (b) The frequency dependence of the absorption efficiency. Inset, the geometry of the SA, which consists of a core of radius a and a shell of radius b. The core is characterized by constant constitutive parameters ε C and μ C , and the shell is characterized by μ s = 1 and ε s = b 4 r 4 at the working frequency.

Fig. 2
Fig. 2

(a) Field pattern of a homogeneous cylinder with radius b 2 a = 4   units . (b) Field pattern of the SA with inner radius a = 1   unit and outer radius b = 2   units .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

μ r μ 0 = μ 0 μ θ = f ( r ) r 1 f ( r ) ,
ε z ε 0 = f ( r ) r f ( r ) .
f ( r ) = { b 2 r , a < r < b r , r > b } ,
μ s = μ r = μ θ = 1 ,
ε s = ε z = b 4 r 4 .
E z ( r , θ ) = { m γ m i J m ( k C r ) e i m θ , r < a m [ α m i J m ( k 0 f ( r ) ) + α m s H m ( 1 ) ( k 0 f ( r ) ) ] e i m θ , a < r < b , m [ β m i J m ( k 0 r ) + β m s H m ( 1 ) ( k 0 r ) ] e i m θ , r > b }
β m s β m i = ε e J m ( k 0 r e ) J m ( k e r e ) μ e J m ( k 0 r e ) J m ( k e r e ) ε e H m ( k 0 r e ) J m ( k e r e ) μ e H m ( k 0 r e ) J m ( k e r e ) ,
ε S ( r ) = 1 ( 1 f S 2 ) ( 1 + b 4 r 4 ) f 2 f S 2 + i γ S f ,
μ S = 1 2 ( 1 f S 2 ) f 2 f S 2 + i γ S f ,
ε C = 1 255 ( f C 2 1 ) ( 1 + ( 256 255 ) 2 ) f 2 f C 2 + i ( f C 2 1 ) ( 256 255 ) f ,
μ C = 1 1 f 2 1 + i f ,

Metrics