Abstract

The exact localization of a quantum emitter in a transparent dielectric medium is an important task in applications of precision confocal microscopy. Therefore we use a planar metallic subwavelength microcavity that can be reversibly tuned across the entire visible range, with the transparent medium between the cavity mirrors. By analyzing the excitation patterns resulting from the illumination of a single fluorescent bead with a radially polarized doughnut mode laser beam we can determine the longitudinal position of this bead in the microcavity with an accuracy of a few nanometers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873).
  2. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  3. L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge U. Press, 2006).
  4. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef] [PubMed]
  5. S. W. Hell, Science 316, 1153 (2007).
    [CrossRef] [PubMed]
  6. S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
    [CrossRef] [PubMed]
  7. M. Schrader and S. W. Hell, J. Microsc. 183, 189 (1996).
    [CrossRef]
  8. M. Nagorni and S. W. Hell, J. Opt. Soc. Am. A 18, 36 (2001).
    [CrossRef]
  9. D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, and A. J. Meixner, Opt. Express 16, 9907 (2008).
    [CrossRef] [PubMed]
  10. M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
    [CrossRef] [PubMed]
  11. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

2001 (1)

1996 (1)

M. Schrader and S. W. Hell, J. Microsc. 183, 189 (1996).
[CrossRef]

1994 (1)

1873 (1)

E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873).

Abbe, E.

E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873).

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Chizhik, A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Enderlein, J.

Failla, A. V.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

Gutbrod, R.

Hartschuh, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge U. Press, 2006).

Hell, S. W.

S. W. Hell, Science 316, 1153 (2007).
[CrossRef] [PubMed]

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

M. Nagorni and S. W. Hell, J. Opt. Soc. Am. A 18, 36 (2001).
[CrossRef]

M. Schrader and S. W. Hell, J. Microsc. 183, 189 (1996).
[CrossRef]

S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
[CrossRef] [PubMed]

Khoptyar, D.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Meixner, A. J.

D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, and A. J. Meixner, Opt. Express 16, 9907 (2008).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

Nagorni, M.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge U. Press, 2006).

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Schleifenbaum, F.

D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, and A. J. Meixner, Opt. Express 16, 9907 (2008).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

Schrader, M.

M. Schrader and S. W. Hell, J. Microsc. 183, 189 (1996).
[CrossRef]

Steiner, M.

D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, and A. J. Meixner, Opt. Express 16, 9907 (2008).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

Stupperich, C.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

Wichmann, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Arch. Mikroskop. Anat. (1)

E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873).

ChemPhysChem (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem 6, 2190 (2005).
[CrossRef] [PubMed]

J. Microsc. (1)

M. Schrader and S. W. Hell, J. Microsc. 183, 189 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Science (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scheme of the tunable microcavity design. (b) White-light transmission pattern (Newton rings) of the microcavity. The inner transmission ring satisfies the λ 2 condition for visible light and is used to monitor the excitation patterns of the fluorescent bead. (c) Applying a voltage to the piezoelectric elements changes the distance between the two mirrors, which results in an increased Newton ring diameter.

Fig. 2
Fig. 2

Scheme of the inverted confocal microscope for the optical measurements. The inset shows the beam-conversion optics.

Fig. 3
Fig. 3

Excitation patterns resulting from illumination with a RPDB for the same single fluorescent bead (a)–(e) in the λ 2 microcavity tuned to different resonator lengths shown in (f)–(j); the insets show the respective calculated patterns. The experimental data represents cross sections through the excitation field intensity distribution in the plane perpendicular to the optical axis. Panels (f)–(j) show the calculated field intensity distributions along the optical axis for the same resonator lengths as for the respective experimental patterns in (a)–(e). The white horizontal line indicates the position of the bead.

Fig. 4
Fig. 4

Line sections (dots) through the respective measured excitation pattern shown in Fig. 3. The fit of the theoretical line sections (solid curves) results in a bead position of (a) 50, (b) 46, and (c) 49 nm above the lower mirror. The sensitivity of the fit is indicated by the dotted curves, which are calculated for a deviation of ± 5 nm from the optimum position.

Metrics