Abstract

Depolarization lidar requires discrimination of received power in polarized and unpolarized components of backscattered light. This can be accomplished with only two polarization measurements. However, parallel- and cross-polarization channels in depolarization lidar cannot always be regarded as independent, because system optical components can cause coupling between these channels and transmitter and receiver polarization planes are rarely perfectly aligned. Calibration constants, while in some instances reasonable approximations, do not fully describe the physics of the receiver and potential for coupling between orthogonal polarization modes. We present an analysis of a general receiver design and introduce an algorithm for decoupling the received data, which only requires the parallel- and cross-polarization data typically recorded in depolarization lidar measurements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C.Weitkamp, ed. (Springer, 2005), p. 19.
  2. J. Biele, G. Beyerle, and G. Baumgarten, Opt. Express 7, 427 (2000).
    [CrossRef] [PubMed]
  3. H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, Appl. Opt. 40, 6587 (2001).
    [CrossRef]
  4. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
    [CrossRef]
  5. C. J. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, Opt. Express 15, 2785 (2007).
    [CrossRef] [PubMed]
  6. G. Gimmestad, Appl. Opt. 47, 3795 (2008).
    [CrossRef] [PubMed]
  7. V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
    [CrossRef]
  8. A. Behrendt and T. Nakamura, Opt. Express 10, 805 (2002).
    [PubMed]

2008 (1)

2007 (1)

2006 (1)

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

1996 (1)

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Adachi, H.

Alvarez, J. M.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

Bagini, V.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Baumgarten, G.

Behrendt, A.

Beyerle, G.

Biele, J.

Borghi, R.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Flynn, C. J.

Frezza, F.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Fujiwara, M.

Gimmestad, G.

Gori, F.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Hostetler, C. A.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

Hunt, W. H.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

Iwasaka, Y.

Mathur, S.

Mendoza, A.

Nakamura, T.

Santarsiero, M.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Sassen, K.

K. Sassen, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C.Weitkamp, ed. (Springer, 2005), p. 19.

Schettini, G.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Schirripa Spagnolo, G.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

Shibata, T.

Vaughan, M. A.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

Winker, D. M.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

Zheng, Y.

Appl. Opt. (2)

Eur. J. Phys. (1)

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Schirripa Spagnolo, Eur. J. Phys. 17, 279 (1996).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006).
[CrossRef]

Opt. Express (3)

Other (1)

K. Sassen, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C.Weitkamp, ed. (Springer, 2005), p. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated d a assuming no receiver effect (dotted curve) and using the introduced calibration algorithm (solid curve).

Fig. 2
Fig. 2

Calculated shot-noise error in d a estimate for data set used in Fig. 1.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S R X = M polarizer M system M scatter S T X .
S T X = [ 1 cos 2 α sin 2 α 0 ] .
M scatter = [ 1 0 0 0 0 1 d a ( z ) 0 0 0 0 d a ( z ) 1 0 0 0 0 2 d a ( z ) 1 ] .
d ( z ) = 2 δ ( z ) 1 + δ ( z ) .
d m ( z ) = 2 S 0 ( z ) S 0 ( z ) + S 0 ( z ) .
M system = M Δ ( d 1 , d 2 , d 3 ) R ( χ ) M W P ( Γ , θ ) .
S 0 ( z ) = S 0 ( z ) 2 [ 1 + ϵ ( Γ , θ , χ , α , d 1 , d 2 , d 3 ) ( 1 d a ( z ) ) ] ,
S 0 ( z ) = S 0 ( z ) 2 [ 1 ϵ ( Γ , θ , χ , α , d 1 , d 2 , d 3 ) ( 1 d a ( z ) ) ] ,
ϵ = 1 d m ( z ) 1 d a ( z ) .
d a ( z ) = 1 1 d m ( z ) ϵ .
σ d a 2 = 4 ϵ 2 ( 1 d m ( z a ) 1 d m ( z c ) ) 2 S 0 ( z c ) S 0 ( z c ) ( S 0 ( z c ) + S 0 ( z c ) ) 3 + 4 ϵ 2 S 0 ( z a ) S 0 ( z a ) ( S 0 ( z a ) + S 0 ( z a ) ) 3 .

Metrics