Abstract

We have demonstrated a photonic crystal fiber-based regenerative amplifier at 1.078μm. The input signal pulse energy is 20pJ in a 12ns pulse at a 3kHz repetition rate. At 8.6W of input pump power, the amplified output pulse energy is 157μJ, yielding a gain of 69dB. To our knowledge, this is the highest gain achieved in a fiber-based regenerative amplifier to date at any wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, Opt. Lett. 22, 378 (1997).
    [CrossRef] [PubMed]
  2. M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
    [CrossRef]
  3. A. Yang, Jpn. J. Appl. Phys. Part 2 45, L673 (2006).
    [CrossRef]
  4. J. C. Knight, J. Opt. Soc. Am. B 24, 1661 (2007).
    [CrossRef]

2007 (2)

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

J. C. Knight, J. Opt. Soc. Am. B 24, 1661 (2007).
[CrossRef]

2006 (1)

A. Yang, Jpn. J. Appl. Phys. Part 2 45, L673 (2006).
[CrossRef]

1997 (1)

Bowers, M.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Burkhart, S.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Caplen, J. E.

Cohen, S.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Dong, L.

Erbert, G.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Heebner, J.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Hermann, M.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Jedlovec, D.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Knight, J. C.

Penty, R. V.

Richardson, D. J.

Taverner, D.

Williams, K.

Yang, A.

A. Yang, Jpn. J. Appl. Phys. Part 2 45, L673 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 2 (1)

A. Yang, Jpn. J. Appl. Phys. Part 2 45, L673 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, Proc. SPIE 6451, 64511M (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental schematic of hybrid bulk-fiber, regenerative amplifier (HWP, half-wave plate; TFP, thin-film polarizer; HR, high reflecting mirror; LD, laser diode; NDF, neutral density filter; LWP, long wavelength pass mirror).

Fig. 2
Fig. 2

Single-pass amplifier gain (dB) versus input pump power (W).

Fig. 3
Fig. 3

Amplifier output pulse energy ( μ J ) and number of cavity round trips versus input pump power (W).

Fig. 4
Fig. 4

Spectral profile of the input and the 157 μ J output pulse.

Fig. 5
Fig. 5

Temporal profile of the input and the 157 μ J output pulse.

Metrics